STIMATING THE M INIMAL B ACKWARD E RROR IN LSQR

Abstract In this paper we propose practical and efficiently-computab le stopping criteria for the iterative solution of large sparse linear least squares (LS) problems. A lthough we focus our discussion on the algorithm LSQR of Paige and Saunders, many ideas discussed here are als o app icable to other conjugate gradients type algorithms. We review why the 2-norm of the projection of the residual vector onto the range of A is a useful measure of convergence, and show how this projection can be e stimated efficiently at every iteration of LSQR. We also give practical and cheaply-computable estimates of th e minimal backward error for the LS problem.

[1]  C. Lanczos An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .

[2]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[3]  J. L. Rigal,et al.  On the Compatibility of a Given Solution With the Data of a Linear System , 1967, JACM.

[4]  C. Paige Bidiagonalization of Matrices and Solution of Linear Equations , 1974 .

[5]  G. W. Stewart,et al.  Research, Development, and LINPACK , 1977 .

[6]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[7]  P. Hansen Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion , 1987 .

[8]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[9]  Ji-Guang Sun,et al.  Optimal backward perturbation bounds for the linear least squares problem , 1995, Numer. Linear Algebra Appl..

[10]  J. Navarro-Pedreño Numerical Methods for Least Squares Problems , 1996 .

[11]  Richard F. Barrett,et al.  Matrix Market: a web resource for test matrix collections , 1996, Quality of Numerical Software.

[12]  R. Karlson,et al.  Estimation of optimal backward perturbation bounds for the linear least squares problem , 1997 .

[13]  Ming Gu,et al.  Backward Perturbation Bounds for Linear Least Squares Problems , 1999, SIAM J. Matrix Anal. Appl..

[14]  Å. Björck,et al.  Stability of Conjugate Gradient and Lanczos Methods for Linear Least Squares Problems , 1998, SIAM J. Matrix Anal. Appl..

[15]  J.,et al.  Numerical Linear Algebra Algorithms and , 2000 .

[16]  Z. Strakos,et al.  On error estimation in the conjugate gradient method and why it works in finite precision computations. , 2002 .

[17]  Z. Strakos,et al.  Error Estimation in Preconditioned Conjugate Gradients , 2005 .

[18]  Gene H. Golub,et al.  Calculating the singular values and pseudo-inverse of a matrix , 2007, Milestones in Matrix Computation.

[19]  M. Arioli,et al.  Least-squares problems, normal equations, and stopping criteria for the conjugate gradient method , 2008 .

[20]  Xiao-Wen Chang,et al.  Stopping Criteria for the Iterative Solution of Linear Least Squares Problems , 2009, SIAM J. Matrix Anal. Appl..