A Technique for the Numerical Solution of Certain Integral Equations of the First Kind

where the known functions h(x) , K(x, y) and g(x) are assumed to be bounded and usually to be continuous. If h(x) ~0 the equation is of first kind; if h(x) ~ 0 for a -<_ x ~ b, the equation is of second kind; if h(x) vanishes somewhere but not identically, the equation is of third kind. If the range of integration is infinite or if the kernel K(x, y) is not bounded, the equation is singular. Here we will consider only nonsingular linear integral equations of the first kind: