Review. Precision Viticulture. Research topics, challenges and opportunities in site-specific vineyard management

Precision Viticulture (PV) is a concept that is beginning to have an impact on the wine-growing sector. Its practical implementation is dependant on various technological developments: crop sensors and yield monitors, local and remote sensors, Global Positioning Systems (GPS), VRA (Variable-Rate Application) equipment and machinery, Geographic Information Systems (GIS) and systems for data analysis and interpretation. This paper reviews a number of research lines related to PV. These areas of research have focused on four very specific fields: 1) quantification and evaluation of within-field variability, 2) delineation of zones of differential treatment at parcel level, based on the analysis and interpretation of this variability, 3) development of Variable-Rate Technologies (VRT) and, finally, 4) evaluation of the opportunities for site-specific vineyard management. Research in these fields should allow winegrowers and enologists to know and understand why yield variability exists within the same parcel, what the causes of this variability are, how the yield and its quality are interrelated and, if spatial variability exists, whether site-specific vineyard management is justifiable on a technical and economic basis.

[1]  B. Tisseyre,et al.  The potential of high spatial resolution information to define within-vineyard zones related to vine water status , 2008, Precision Agriculture.

[2]  John R. Miller,et al.  Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy , 2005 .

[3]  David Lamb,et al.  PA—Precision Agriculture: Remote-Sensing and Mapping of Weeds in Crops , 2001 .

[4]  José Antonio Martínez Casasnovas,et al.  Viticultura de precisión: Predicción de cosecha a partir de variables del cultivo e índices de vegetación. , 2005 .

[5]  Jordi Llorens,et al.  Variable dose rate sprayer prototype for tree crops based on sensor measured canopy characteristics. , 2007 .

[6]  Josep Miquel Ubalde,et al.  Aspectos de viticultura de precisión en la práctica de la fertilización razonada , 2005 .

[7]  D. Corwin,et al.  Apparent soil electrical conductivity measurements in agriculture , 2005 .

[8]  R. Bramley,et al.  Understanding variability in winegrape production systems , 2004 .

[9]  R. Plant Site-specific management: the application of information technology to crop production , 2001 .

[10]  Peter Adams,et al.  Improving pathways to adoption: Putting the right P's in precision agriculture , 2008 .

[11]  D. Lamb,et al.  Characterising and mapping vineyard canopy using high-spatial-resolution aerial multispectral images , 2003 .

[12]  Lee F. Johnson,et al.  Airborne imaging aids vineyard canopy evaluation , 1996 .

[13]  G. Richard,et al.  Electrical resistivity survey in soil science: a review . , 2005 .

[14]  Luis Ruiz García,et al.  Viticultura de precisión, integración de sensores en vendimiadoras , 2006 .

[15]  Andrew Hall,et al.  Low resolution remotely sensed images of winegrape vineyards map spatial variability in planimetric canopy area instead of leaf area index , 2008 .

[16]  Brett Whelan,et al.  A management Opportunity Index for Precision Agriculture. , 2000 .

[17]  Rgv Bramley,et al.  Making sense of vineyard variability in Australia , 2003 .

[18]  Bruno Tisseyre,et al.  Whithin-field temporal stability of some parameters in Viticulture: potential toward a site specific management , 2008 .

[19]  Brett Whelan,et al.  Establishing Management Classes for Broadacre Agricultural Production , 2007 .

[20]  D. Lamb,et al.  Optical remote sensing applications in viticulture - a review , 2002 .

[21]  Naiqian Zhang,et al.  Development of a field-level geographic information system , 2001 .

[22]  R. Nemani,et al.  Mapping vineyard leaf area with multispectral satellite imagery , 2003 .

[23]  Clyde W. Fraisse,et al.  Delineation of Site-Specific Management Zones by Unsupervised Classification of Topographic Attributes and Soil Electrical Conductivity , 2001 .

[24]  A. Escolà,et al.  Variable rate application of plant protection products in vineyard using ultrasonic sensors , 2007 .

[25]  Stanley Best,et al.  Use of Precision Viticulture Tools to Optimize the Harvest of High Quality Grapes , 2005 .

[26]  J. V. Stafford,et al.  Evaluating the benefits from precision agriculture: the economcis of meeting traceability requirements and envrionmental targets , 2005 .

[27]  Bruno Tisseyre,et al.  New technologies and methodologies for site-specific viticulture , 2007 .

[28]  J. V. Stafford,et al.  A comparison of the spatial variability of vineyard yield in European and Australian production systems. , 2005 .

[29]  J. Lowenberg‐DeBoer,et al.  Precision Agriculture and Sustainability , 2004, Precision Agriculture.

[30]  R. V. Rossel,et al.  Spatial prediction for precision agriculture , 1996 .

[31]  Hermann Auernhammer,et al.  Precision farming — the environmental challenge , 2001 .

[32]  R. Bramley,et al.  Precision agriculture — opportunities, benefits and pitfalls of site-specific crop management in Australia , 1998 .

[33]  María Paz Diago Santamaría,et al.  Estimación de la variabilidad del vigor del viñedo a través de un sensor óptico lateral terrestre , 2008 .

[34]  Susan L. Ustin,et al.  Grapevine dormant pruning weight prediction using remotely sensed data , 2003 .

[35]  J. V. Stafford,et al.  Obtaining grape yield maps and analysis of within-field variability in Raimat (Spain). , 2005 .

[36]  J. V. Stafford,et al.  Generating benefits from precision viticulture through selective harvesting. , 2005 .

[37]  J. Bouma,et al.  Future Directions of Precision Agriculture , 2005, Precision Agriculture.

[38]  Dennis L. Corwin,et al.  Editorial: Applications of apparent soil electrical conductivity in precision agriculture , 2005 .

[39]  Ricardo Blanco Roldán,et al.  Viticultura de precisión en Raimat (Lleida): experiencias durante el período 2002-2004 , 2005 .

[40]  J. V. Stafford,et al.  Spatial variability of wine grape yield and quality in Chilean vineyards: economic and environmental impacts. , 2003 .

[41]  J. Hummelb,et al.  On-the-go soil sensors for precision agriculture , 2004 .

[42]  Constantino Valero Ubierna Situación actual de la agricultura de precisión en España. , 2004 .

[43]  Vicente Sotés Ruiz El sector de la viticultura en la última década y condicionantes de futuro , 2004 .

[44]  J. V. Stafford,et al.  Whole-of-vineyard experimentation: an improved basis for knowledge generation and decision making. , 2005 .

[45]  N. Zhang,et al.  Precision agriculture—a worldwide overview , 2002 .

[46]  D. C. Williams,et al.  REMOTE SENSING OF VINEYARD MANAGEMENT ZONES: IMPLICATIONS FOR WINE QUALITY , 2001 .

[47]  J. A. Martínez,et al.  Viticultura de precisión: predicción de cosecha a partir de variables de cultivo e índices de vegetación , 2005 .

[48]  J. Melia,et al.  Assessment of vine development according to available water resources by using remote sensing in La Mancha, Spain , 1999 .

[49]  Brett Whelan,et al.  A preliminary approach to assessing the opportunity for site-specific crop management in a field, using yield monitor data , 2003 .

[50]  Pablo J. Zarco-Tejada,et al.  Using hyperspectral remote sensing to map grape quality in 'Tempranillo' vineyards affected by iron deficiency chlorosis , 2007 .

[51]  D. Giles,et al.  Quality Control Verification and Mapping for Chemical Application , 2003, Precision Agriculture.