A new and economic approach to synthesize and fabricate bioactive diopside ceramics using a modified domestic microwave oven. Part 2: effect of P2O5 additions on diopside bioactivity and mechanical properties.

In this work, diopside based ceramics was obtained by solid state reaction using conventional sintering (CS) and microwave sintering (MS). Moreover, different amounts of P2O5 (0.5-5.0 wt.%) have been added. It has been found that a relative density up to 95% theoretical was obtained for diopside containing 2.0 and 5.0 wt.% P2O5, sintered at 1250 °C for 2h and at 1075 °C only for 15 min using CS and MS. Excellent values of micro hardness (7.4 ± 0.1 GPa) and 3 point flexural strength (about 270 MPa) for samples containing 5 wt.% P2O5, sintered at 1075 °C for 15 min using MS were measured. Besides this, a relatively low weight loss ratio has been measured (0.01%) for diopside samples containing 5 wt.% P2O5, sintered under the same conditions, after soaking in physiological salt solution for 2 days. Additionally, the bioactivity of diopside by the possibility of formation of apatite on the surface of pure diopside and diopside containing 2 wt.% of P2O5 immersed in simulated body fluid (SBF) was also confirmed. Finally, particular nano-sized of Carbonated hydroxyapatite (CHA) crystals (rice shaped) were formed and covered the surface of these samples, soaked in SBF solution for 14 days.

[1]  A. Harabi,et al.  Sintering of bioceramics using a modified domestic microwave oven , 2011 .

[2]  A. Harabi,et al.  Production of Supports and Filtration Membranes from Algerian Kaolin and Limestone , 2012 .

[3]  R. Kiminami,et al.  Microwave sintering of alumina–zirconia nanocomposites , 2008 .

[4]  Chengtie Wu,et al.  In vitro bioactivity of akermanite ceramics. , 2006, Journal of biomedical materials research. Part A.

[5]  María Vallet-Regí,et al.  Ceramics for medical applications , 2001 .

[6]  Chengtie Wu,et al.  Porous diopside (CaMgSi(2)O(6)) scaffold: A promising bioactive material for bone tissue engineering. , 2010, Acta biomaterialia.

[7]  Geun-Hyoung Lee,et al.  Sintering behavior and apatite formation of diopside prepared by coprecipitation process. , 2004, Colloids and surfaces. B, Biointerfaces.

[8]  J. Bonnet,et al.  Effect of calcium phosphate addition on sintering of El-Oued sand quartz raw materials , 2014 .

[9]  D. Clark,et al.  Microwave—Induced Combustion Synthesis of TiC‐Al2O3, Composites , 2008 .

[10]  A. Harabi,et al.  Sintering and mechanical properties of porcelains prepared from algerian raw materials , 2011 .

[11]  R. Souza,et al.  Effect of bioglass additions on the sintering of Y-TZP bioceramics , 2009 .

[12]  A. Harabi,et al.  Sol-gel synthesis of a new composition of bioactive glass in the quaternary system SiO2-CaO-Na2O-P2O5 , 2011 .

[13]  D. Clark,et al.  Ignition behavior and characteristics of microwave-combustion synthesized Al2O3–TiC powders , 2004 .

[14]  S. Achour,et al.  Effect of nitrogen reactive gas on ZnO nanostructure development prepared by thermal oxidation of sputtered metallic zinc , 2006 .

[15]  M. Vallet‐Regí,et al.  Sol−Gel Glasses as Precursors of Bioactive Glass Ceramics , 2003 .

[16]  L L Hench,et al.  In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses. , 2002, Journal of biomedical materials research.

[17]  H. Ming,et al.  Characterization and analysis of CaO–SiO2–B2O3 ternary system ceramics , 2011 .

[18]  Geun-Hyoung Lee,et al.  Preparation of diopside with apatite-forming ability by sol–gel process using metal alkoxide and metal salts , 2004 .

[19]  Larry L. Hench,et al.  Bioceramics: From Concept to Clinic , 1991 .

[20]  A. Harabi,et al.  A New and Economic Approach to Synthesize and Fabricate Bioactive Diopside Ceramics Using a Modified Domestic Microwave Oven. Part 1: Study of Sintering and Bioactivity , 2014 .

[21]  F. Bouzerara,et al.  Porous Ceramic Supports for Membranes Prepared from Kaolin (DD3) and Calcite Mixtures , 2015 .

[22]  Rustum Roy,et al.  Microwave sintering of hydroxyapatite ceramics , 1994 .

[23]  S. Achour,et al.  Effect of tantalum addition on microstructure and optical properties of TiN thin films , 2007 .

[24]  F. Sandoval,et al.  Solid-state reaction for producing β-wollastonite , 1990 .

[25]  Jiang Chang,et al.  A simple method to synthesize single-crystalline β-wollastonite nanowires , 2007 .

[26]  F. Bouzerara,et al.  Preparation and characterization of microfi ltration membranes and their supports using kaolin (DD2) and CaCO3 , 2009 .

[27]  A. Harabi,et al.  Elaboration and characterization of ceramic membrane supports from raw materials used in microfiltration , 2016 .

[28]  R. Zuo,et al.  Sol–gel derived CaO–B2O3–SiO2 glass/CaSiO3 ceramic composites: processing and electrical properties , 2011 .

[29]  Egon Matijević,et al.  Chemistry of silica , 1980 .

[30]  A. Harabi,et al.  Effect of ZrO2, TiO2, and Al2O3 Additions on Process and Kinetics of Bonelike Apatite Formation on Sintered Natural Hydroxyapatite Surfaces , 2012 .

[31]  A. Clark,et al.  Effect of Texture on the Rate of Hydroxyapatite Formation on Gel-Silica Surface , 1995 .

[32]  A. Harabi,et al.  Dissolution kinetic and structural behaviour of natural hydroxyapatite vs. thermal treatment , 2008 .

[33]  A. Harabi,et al.  Preparation and characterization of tubular membrane supports using centrifugal casting , 2009 .

[34]  A. Harabi,et al.  Elaboration and characterization of low cost ceramics microfiltration membranes applied to the sterilization of plant tissue culture media , 2016 .

[35]  S. Barama,et al.  Biological properties study of bioactive wollastonite containing 5 wt% B2O3 prepared from local raw materials , 2016 .

[36]  K. Omori Analysis of the Infrared Absorption Spectrum of Diopside , 1971 .

[37]  S. Achour,et al.  Crystallization and sintering of cordierite and anorthite based binary ceramics , 2001 .

[38]  A. Harabi,et al.  A modified milling system, using a bimodal distribution of highly resistant ceramics. Part 1. A natural hydroxyapatite study. , 2015, Materials science & engineering. C, Materials for biological applications.

[39]  M. Palou,et al.  CRYSTALLIZATION MECHANISM AND BIOACTIVITY OF LITHIUM DISILICATE GLASSES IN RELATION TO CaO, P2O5, CaF2 ADDITION , 2007 .

[40]  Zhihua Zhou,et al.  Bioactivity of bioresorbable composite based on bioactive glass and poly-L-lactide , 2007 .

[41]  T Kitsugi,et al.  Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. , 1990, Journal of biomedical materials research.

[42]  A. Harabi,et al.  Elaboration and Properties of Zirconia Microfiltration Membranes , 2012 .

[43]  A. Harabi,et al.  Preparation process of a highly resistant wollastonite bioceramics using local raw materials , 2012, Journal of Thermal Analysis and Calorimetry.

[44]  A. Harabi,et al.  In Vitro Bioactivity Study of Pure Wollastonite Prepared from Local Raw Materials , 2015 .

[45]  M. Vallet‐Regí,et al.  Glasses with Medical Applications , 2003 .

[46]  A. Harabi,et al.  Mechanical properties of sintered alumina-chromia refractories , 1995 .

[47]  A. Harabi,et al.  Porous ceramic membranes prepared from kaolin , 2009 .

[48]  A. Harabi,et al.  Preparation and characterization of membrane supports for microfiltration and ultrafiltration using kaolin (DD2) and CaCO3 , 2016 .

[49]  A. Larbot,et al.  Porous ceramic supports for membranes prepared from kaolin and doloma mixtures , 2006 .

[50]  P. Ramesh,et al.  Use of partially oxidized SiC particle bed for microwave sintering of low loss ceramics , 1999 .

[51]  A. Harabi,et al.  Shaping of microfiltration (MF) ZrO2 membranes using a centrifugal casting method , 2015 .

[52]  S. Achour,et al.  A process for sintering of MgO and CaO based ceramics , 1999 .

[53]  A. Figoli,et al.  Development and characterization of tubular composite ceramic membranes using natural alumino-silicates for microfiltration applications , 2015 .

[54]  Lesile Glasser The chemistry of silica: By Ralph K. Iller. Pp. vii+ 866. Wiley, Chichester. 1979, £39.50 , 1980 .

[55]  Xihua Zhang,et al.  Hydroxyapatite/diopside ceramic composites and their behaviour in simulated body fluid , 2011 .

[56]  A. Harabi,et al.  Densification and grain growth in sintered alumina-chromia powder mixtures , 1995 .

[57]  S. Achour,et al.  Effect of Thickness and Orientation of Alumina Fibrous Thermal Insulation on Microwave Heating in a Modified Domestic 2.45 GHz Multi-mode Cavity , 2012 .

[58]  A. Harabi,et al.  Effect of P2O5 on mechanical properties of porous natural hydroxyapatite derived from cortical bovine bones sintered at 1,050°C , 2016 .

[59]  D. Clark,et al.  Synthesis of Tic — Al2O3 Composites Using Microwave‐Induced Self‐Propagating High Temperature Synthesis (SHS) , 2010 .

[60]  J. Vleugels,et al.  HYBRID SINTERING WITH A TUBULAR SUSCEPTOR IN A CYLINDRICAL SINGLE-MODE MICROWAVE FURNACE , 2000 .

[61]  S. Tsutsumi,et al.  Study of diopside ceramics for biomaterials , 1999, Journal of materials science. Materials in medicine.

[62]  L L Hench,et al.  Effect of crystallization on apatite-layer formation of bioactive glass 45S5. , 1996, Journal of biomedical materials research.

[63]  A. Kalinkin,et al.  Sorption of atmospheric carbon dioxide and structural changes of Ca and Mg silicate minerals during grinding I. Diopside , 2001 .

[64]  D. Greenspan,et al.  Effect of Surface Area to Volume Ratio on In Vitro Surface Reactions of Bioactive Glass Particulates , 1994 .

[65]  A. Harabi,et al.  Grain Growth in Sintered Natural Hydroxyapatite , 2015 .

[66]  A. Harabi,et al.  A new and economic approach to fabricate resistant porous membrane supports using kaolin and CaCO3 , 2014 .

[67]  F. Bouzerara,et al.  Elaboration and characterization of tubular supports for membranes filtration , 2016 .

[68]  S. K. Pratihar,et al.  Pressureless sintering of dense hydroxyapatite–zirconia composites , 2008, Journal of materials science. Materials in medicine.

[69]  M. Pascual,et al.  Structural analysis and thermal behavior of diopside-fluorapatite-wollastonite-based glasses and glass-ceramics. , 2010, Acta biomaterialia.

[70]  S. Barama,et al.  Effect of sodium phosphate addition on mechanical properties of porous Sigue quartz sand , 2016 .