The Samail subduction zone dilemma: Geochronology of high-pressure rocks from the Saih Hatat window, Oman, reveals juxtaposition of two subduction zones with contrasting thermal histories

[1]  W. Rickard,et al.  Microstructures, geochemistry, and geochronology of mica fish: Review and advances , 2023, Journal of Structural Geology.

[2]  T. Meier,et al.  Lithospheric evolution of eastern Arabia based on surface wave and receiver function analyses , 2023, Earth and Planetary Science Letters.

[3]  T. Takeshita,et al.  Pressure–temperature paths of tectonic blocks in mélange: Recording thermal evolution of a subduction channel at an initial stage of subduction , 2023, Journal of Metamorphic Geology.

[4]  U. Ring,et al.  Some Like It Cold: The “Conundrum of Samail” Revisited , 2023, Tectonics.

[5]  F. Mattern,et al.  The Ediacaran Hiyam Formation: A zoom through the diagenetic and structural complexity of the metamorphic Hi2 Member, Saih Hatat Dome, Oman Mountains , 2022, Marine and Petroleum Geology.

[6]  M. Searle,et al.  Tectono‐Stratigraphic Evolution of the Foreland Fold‐and‐Thrust Belt of the United Arab Emirates , 2022, Tectonics.

[7]  F. Krüger,et al.  A 3-D crustal shear-wave velocity model and moho map below the semail ophiolite, eastern Arabia , 2022, Geophysical Journal International.

[8]  P. Agard,et al.  Cretaceous thermal evolution of the closing Neo-Tethyan realm revealed by multi-method petrochronology , 2022, Lithos.

[9]  M. Searle,et al.  One line on the map: A review of the geological history of the Semail Thrust, Oman-UAE mountains , 2022, Journal of Structural Geology.

[10]  B. Dubacq,et al.  Timescales of subduction initiation and evolution of subduction thermal regimes , 2022, Earth and Planetary Science Letters.

[11]  D. Gürer,et al.  Plate tectonic chain reaction revealed by noise in the Cretaceous quiet zone , 2022, Nature Geoscience.

[12]  F. Mattern,et al.  Microfacies and composition of ferruginous beds at the platform-foreland basin transition (Late Albian to Turonian Natih Formation, Oman Mountains): forebulge dynamics and regional to global tectono-geochemical framework , 2021, Sedimentary Geology.

[13]  U. Ring,et al.  The Cycladic Blueschist Unit of the Hellenic subduction orogen: Protracted high-pressure metamorphism, decompression and reimbrication of a diachronous nappe stack , 2021, Earth-Science Reviews.

[14]  F. Mattern,et al.  Thermal maturity of the Hawasina units and origin of the Batinah Mélange (Oman Mountains): Insights from clay minerals , 2021, Marine and Petroleum Geology.

[15]  R. Vissers,et al.  A record of plume-induced plate rotation triggering subduction initiation , 2021, Nature Geoscience.

[16]  M. Searle,et al.  Dating Continental Subduction Beneath the Samail Ophiolite: Garnet, Zircon, and Rutile Petrochronology of the As Sifah Eclogites, NE Oman , 2021, Journal of Geophysical Research: Solid Earth.

[17]  M. Searle,et al.  Burial, Accretion, and Exhumation of the Metamorphic Sole of the Oman‐UAE Ophiolite , 2021, Tectonics.

[18]  P. Kelemen,et al.  High‐Precision U‐Pb Zircon Dating of Late Magmatism in the Samail Ophiolite: A Record of Subduction Initiation , 2021, Journal of Geophysical Research: Solid Earth.

[19]  U. Ring,et al.  Structural architecture and Late Cretaceous exhumation history of the Saih Hatat Dome (Oman), a review based on existing data and semi-restorable cross-sections , 2021 .

[20]  F. Mattern,et al.  Chapter 1 Introduction and tectonic framework , 2021, memoirs.

[21]  D. Stockli,et al.  Structural and Thermal Evolution of an Infant Subduction Shear Zone: Insights From Sub‐Ophiolite Metamorphic Rocks Recovered From Oman Drilling Project Site BT‐1B , 2021, Journal of geophysical research. Solid earth.

[22]  M. Searle,et al.  Petrochronology of Wadi Tayin Metamorphic Sole Metasediment, With Implications for the Thermal and Tectonic Evolution of the Samail Ophiolite (Oman/UAE) , 2020, Tectonics.

[23]  D. Gray,et al.  Metamorphic response within different subduction–obduction settings preserved on the NE Arabian margin , 2020 .

[24]  F. Mattern,et al.  Late Lutetian (Eocene) mafic intrusion into shallow marine platform deposits north of the Oman Mountains (Rusayl Embayment) and its tectonic significance , 2020 .

[25]  A. Braathen,et al.  Supradetachment to rift basin transition recorded in continental to marine deposition; Paleogene Bandar Jissah Basin, NE Oman , 2020, Basin Research.

[26]  F. Mattern,et al.  Deformation of the Cambro-Ordovician Amdeh Formation (Members 1 and 2): Characteristics, Origins, and Stratigraphic Significance (Wadi Amdeh, Saih Hatat Dome, Oman Mountains) , 2020, Geosciences.

[27]  F. Mattern,et al.  Postobductional Kinematic Evolution and Geomorphology of a Major Regional Structure—The Semail Gap Fault Zone (Oman Mountains) , 2019, Tectonics.

[28]  D. V. van Hinsbergen,et al.  Kinematic and paleomagnetic restoration of the Semail ophiolite (Oman) reveals subduction initiation along an ancient Neotethyan fracture zone , 2019, Earth and Planetary Science Letters.

[29]  R. Müller,et al.  A Global Plate Model Including Lithospheric Deformation Along Major Rifts and Orogens Since the Triassic , 2019, Tectonics.

[30]  M. Caddick,et al.  Quantifying magnitudes of shear heating in metamorphic systems , 2018, Tectonophysics.

[31]  J. Burg Geology of the onshore Makran accretionary wedge: Synthesis and tectonic interpretation , 2018, Earth-Science Reviews.

[32]  R. Stern The evolution of plate tectonics , 2018, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[33]  B. Grasemann,et al.  Metamorphic Zonation by Out‐of‐Sequence Thrusting at Back‐Stepping Subduction Zones: Sequential Accretion of the Caledonian Internides, Central Sweden , 2018, Tectonics.

[34]  B. Charette,et al.  Forced subduction initiation recorded in the sole and crust of the Semail Ophiolite of Oman , 2018, Nature Geoscience.

[35]  M. Sudo,et al.  Rb-Sr and in situ 40Ar/39Ar dating of exhumation-related shearing and fluid-induced recrystallization in the Sesia zone (Western Alps, Italy) , 2018, Geosphere.

[36]  B. Grasemann,et al.  Intracrystalline deformation of calcite in the upper brittle crust , 2018 .

[37]  F. Mattern,et al.  Postobductional extension along and within the Frontal Range of the Eastern Oman Mountains , 2018 .

[38]  U. Ring,et al.  Absolute ages of multiple generations of brittle structures by U-Pb dating of calcite , 2018 .

[39]  U. Ring,et al.  Late Eocene Uplift of the Al Hajar Mountains, Oman, Supported by Stratigraphy and Low‐Temperature Thermochronology , 2017 .

[40]  T. Gerya,et al.  Subduction initiation in nature and models: A review , 2017, Tectonophysics.

[41]  W. Spakman,et al.  Pacific plate motion change caused the Hawaiian-Emperor Bend , 2017, Nature Communications.

[42]  F. Mattern,et al.  Estimating original thickness and extent of the Semail Ophiolite in the eastern Oman Mountains by paleothermal indicators , 2017 .

[43]  F. Corfu,et al.  Age and origin of thin discontinuous gneiss sheets in the distal domain of the magma-poor hyperextended pre-Caledonian margin of Baltica, southern Norway , 2017, Journal of the Geological Society.

[44]  C. MacLeod,et al.  Clockwise rotation of the entire Oman ophiolite occurred in a suprasubduction zone setting , 2016 .

[45]  P. Kelemen,et al.  Synchronous formation of the metamorphic sole and igneous crust of the Semail ophiolite: New constraints on the tectonic evolution during ophiolite formation from high-precision U–Pb zircon geochronology , 2016 .

[46]  A. Heward,et al.  Darriwilian shallow-marine deposits from the Sultanate of Oman, a poorly known portion of the Arabian margin of Gondwana , 2016, Geological Magazine.

[47]  O. Oncken,et al.  Zagros blueschists: Episodic underplating and long-lived cooling of a subduction zone , 2016 .

[48]  M. Kohn,et al.  The Global Range of Subduction Zone Thermal Structures from Exhumed Blueschists and Eclogites: Rocks Are Hotter than Models , 2015 .

[49]  C. Thieulot,et al.  Dynamics of intraoceanic subduction initiation: 2. Suprasubduction zone ophiolite formation and metamorphic sole exhumation in context of absolute plate motions , 2015, Geochemistry, Geophysics, Geosystems.

[50]  C. John,et al.  Diagenetic Geobodies: Fracture-Controlled Burial Dolomite in Outcrops From Northern Oman , 2015 .

[51]  A. Ladenberger,et al.  Pressure–temperature evolution of a kyanite–garnet pelitic gneiss from Åreskutan: evidence of ultra-high-pressure metamorphism of the Seve Nappe Complex, west-central Jämtland, Swedish Caledonides , 2013 .

[52]  A. V. Brovarone,et al.  Timing of HP metamorphism in the Schistes Lustrés of Alpine Corsica: New Lu–Hf garnet and lawsonite ages , 2013 .

[53]  J. Cosgrove,et al.  Linking process, dimension, texture, and geochemistry in dolomite geobodies: A case study from Wadi Mistal (northern Oman) , 2013 .

[54]  R. Miller,et al.  Tectonic development of the Samail ophiolite: High‐precision U‐Pb zircon geochronology and Sm‐Nd isotopic constraints on crustal growth and emplacement , 2013 .

[55]  D. Gee,et al.  UHP metamorphism recorded by kyanite-bearing eclogite in the Seve Nappe Complex of northern Jämtland, Swedish Caledonides , 2013 .

[56]  C. MacLeod,et al.  “Moist MORB” axial magmatism in the Oman ophiolite: The evidence against a mid-ocean ridge origin , 2013 .

[57]  N. McQuarrie,et al.  Retrodeforming the Arabia-Eurasia collision zone: Age of collision versus magnitude of continental subduction , 2013 .

[58]  S. Kelley,et al.  When can muscovite 40Ar/39Ar dating constrain the timing of metamorphic exhumation? , 2012 .

[59]  T. Aigner,et al.  Integrated Biostratigraphy of the Saiq Formation (Al Jabal al-Akhdar, Oman Mountains) and its Implication for the Regional Correlation of Khuff Time-equivalent Deposits , 2011 .

[60]  S. Kelley,et al.  Interpreting high-pressure phengite 40Ar/39Ar laserprobe ages: an example from Saih Hatat, NE Oman , 2011 .

[61]  K. Burke Plate Tectonics, the Wilson Cycle, and Mantle Plumes: Geodynamics from the Top , 2011 .

[62]  J. Platt,et al.  Grainsize evolution in ductile shear zones: Implications for strain localization and the strength of the lithosphere , 2011 .

[63]  H. Furnes,et al.  Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere , 2011 .

[64]  J. Hunen,et al.  Lithospheric cooling and thickening as a basin forming mechanism , 2010 .

[65]  M. Searle,et al.  Crustal stacking and expulsion tectonics during continental subduction: P‐T deformation constraints from Oman , 2010 .

[66]  U. Ring,et al.  The Hellenic Subduction System: High-Pressure Metamorphism, Exhumation, Normal Faulting, and Large-Scale Extension , 2010 .

[67]  Richard G. Gordon,et al.  Geologically current plate motions , 2010 .

[68]  T. Aigner,et al.  Facies and stratigraphic framework of a Khuff outcrop equivalent: Saiq and Mahil formations, Al Jabal al-Akhdar, Sultanate of Oman , 2010, GeoArabia.

[69]  T. Gerya,et al.  Subduction initiation at passive margins: Numerical modeling , 2010 .

[70]  R. Schuster,et al.  Initiation of subduction in the Alps: Continent or ocean? , 2010 .

[71]  A. Gerdes,et al.  Differential subduction and exhumation of crustal slices in the Sulu HP‐UHP metamorphic terrane: insights from mineral inclusions, trace elements, U‐Pb and Lu‐Hf isotope analyses of zircon in orthogneiss , 2009 .

[72]  P. Monié,et al.  Intracontinental subduction: a possible mechanism for the Early Palaeozoic Orogen of SE China , 2009 .

[73]  T. Dumont,et al.  Structures and timing of Permian rifting in the central Oman Mountains (Saih Hatat) , 2009 .

[74]  C. Blome,et al.  Evolution of the Arabian Carbonate Platform Margin Slope and its Response to Orogenic Closing of a Cretaceous Ocean Basin, Oman , 2009 .

[75]  H. Austrheim,et al.  Geochronology of fluid-induced eclogite and amphibolite facies metamorphic reactions in a subduction–collision system, Bergen Arcs, Norway , 2008 .

[76]  C. Faccenna,et al.  Flat subduction dynamics and deformation of the South American plate: Insights from analog modeling , 2008 .

[77]  U. Ring,et al.  The nappe rule: why does it work? , 2007, Journal of the Geological Society.

[78]  M. Bernecker Facies architecture of an isolated carbonate platform in the Hawasina Basin: The Late Triassic Jebel Kawr of Oman , 2007 .

[79]  L. Jolivet,et al.  New, high‐precision P–T estimates for Oman blueschists: implications for obduction, nappe stacking and exhumation processes , 2007 .

[80]  M. Searle Structural geometry, style and timing of deformation in the Hawasina Window, Al Jabal al Akhdar and Saih Hatat culminations, Oman Mountains , 2007, GeoArabia.

[81]  D. Waters,et al.  Oxidized eclogites and garnet‐blueschists from Oman: P–T path modelling in the NCFMASHO system , 2006 .

[82]  L. Jolivet,et al.  Late Cretaceous to Paleogene post-obduction extension and subsequent Neogene compression in the Oman Mountains , 2006, GeoArabia.

[83]  O. Saddiqi,et al.  Fission-track thermochronology of the Oman Mountains continental windows, and current problems of tectonic interpretation , 2006 .

[84]  G. Dromart,et al.  Stratigraphic organisation of the Jurassic sequence in Interior Oman, Arabian Peninsula , 2006, GeoArabia.

[85]  John Miller,et al.  Strain state and kinematic evolution of a fold-nappe beneath the Samail Ophiolite, Oman , 2005 .

[86]  M. Searle,et al.  Dating the geologic history of Oman’s Semail ophiolite: insights from U-Pb geochronology , 2005 .

[87]  U. Ring,et al.  Crystallization and very rapid exhumation of the youngest Alpine eclogites (Tauern Window, Eastern Alps) from Rb/Sr mineral assemblage analysis , 2005 .

[88]  G. Dromart,et al.  Jurassic evolution of the Arabian carbonate platform edge in the central Oman Mountains , 2005, Journal of the Geological Society.

[89]  T. Gerya,et al.  The role of viscous heating in Barrovian metamorphism of collisional orogens: thermomechanical models and application to the Lepontine Dome in the Central Alps , 2005 .

[90]  D. Gray,et al.  Comment on “Eoalpine (Cretaceous) evolution of the Oman Tethyan continental margin: insights from a structural field study in Jabal Akhdar (Oman Mountains)” by Jean-Paul Breton et al. , 2004, GeoArabia.

[91]  P. Razin,et al.  Eoalpine (Cretaceous) evolution of the Oman Tethyan continental margin: insights from a structural field study in Jabal Akhdar (Oman Mountains) , 2004, GeoArabia.

[92]  I. Katayama,et al.  SHRIMP U–Pb zircon dating of quartz‐bearing eclogite from the Sanbagawa Belt, south‐west Japan: implications for metamorphic evolution of subducted protolith , 2004 .

[93]  L. Krystyn,et al.  Stratigraphic architecture of the northern Oman continental margin - Mesozoic Hamrat Duru Group, Hawasina complex, Oman , 2004, GeoArabia.

[94]  M. Searle,et al.  Structural evolution, metamorphism and restoration of the Arabian continental margin, Saih Hatat region, Oman Mountains , 2004 .

[95]  M. Searle,et al.  Dating the subduction of the Arabian continental margin beneath the Semail ophiolite, Oman , 2003 .

[96]  U. Ring,et al.  High‐pressure metamorphism in the Aegean, eastern Mediterranean: Underplating and exhumation from the Late Cretaceous until the Miocene to Recent above the retreating Hellenic subduction zone , 2003 .

[97]  Robert J. Stern,et al.  SUBDUCTION ZONES , 2002 .

[98]  S. Kelley Excess argon in K–Ar and Ar–Ar geochronology , 2002 .

[99]  M. Searle,et al.  Subduction zone metamorphism during formation and emplacement of the Semail ophiolite in the Oman Mountains , 2002, Geological Magazine.

[100]  G. Stampfli,et al.  A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons , 2002 .

[101]  John Miller,et al.  Geometry and significance of internal windows and regional isoclinal folds in northeast Saih Hatat, Sultanate of Oman , 2002 .

[102]  J. Avouac,et al.  Intracontinental subduction and Palaeozoic inheritance of the lithosphere suggested by a teleseismic experiment across the Chinese Tien Shan , 2002 .

[103]  M. Bröcker,et al.  Formation and exhumation of blueschists and eclogites from NE Oman: new perspectives from Rb–Sr and 40Ar/39Ar dating , 2001 .

[104]  W. Müller,et al.  Rb–Sr microchrons of synkinematic mica in mylonites: an example from the DAV fault of the Eastern Alps , 2000 .

[105]  John Miller,et al.  Tectonics of the Arabian margin associated with the formation and exhumation of high‐pressure rocks, Sultanate of Oman , 1998 .

[106]  D. Gray,et al.  Exhumation of high-pressure rocks in northeastern Oman , 1998 .

[107]  E. Gnos,et al.  THE CONUNDRUM OF SAMAIL : EXPLAINING THE METAMORPHIC HISTORY , 1997 .

[108]  M. Yamano,et al.  The seismogenic zone of subduction thrust faults , 1997 .

[109]  F. Albarède,et al.  The Lu–Hf dating of garnets and the ages of the Alpine high-pressure metamorphism , 1997, Nature.

[110]  R. Butler,et al.  Dating deformation using Rb‐Sr in white mica: Greenschist facies deformation ages from the Entrelor shear zone, Italian Alps , 1997 .

[111]  E. Gnos,et al.  Rapid emplacement of the Oman ophiolite: Thermal and geochronologic constraints , 1996 .

[112]  A. Carter,et al.  Natural long-term annealing of the zircon fission-track system in Vienna Basin deep borehole samples: Constraints upon the partial annealing zone and closure temperature , 1996 .

[113]  Kerry Gallagher,et al.  Evolving temperature histories from apatite fission-track data , 1995 .

[114]  Walter D. Mooney,et al.  Seismic velocity structure and composition of the continental crust: A global view , 1995 .

[115]  F. Blanckenburg,et al.  Slab breakoff: A model for syncollisional magmatism and tectonics in the Alps , 1995 .

[116]  R. Cliff,et al.  Timing of metamorphism in the Tauern Window, Eastern Alps: Rb‐Sr ages and fabric formation , 1994 .

[117]  O. Saddiqi,et al.  Late Cretaceous exhumation of the Oman blueschists and eclogites: a two-stage extensional mechanism , 1994 .

[118]  M. Searle,et al.  Structure and metamorphism of blueschist–eclogite facies rocks from the northeastern Oman Mountains , 1994, Journal of the Geological Society.

[119]  E. Gnos,et al.  K-Ar ages of the metamorphic sole of the Semail Ophiolite: implications for ophiolite cooling history , 1993 .

[120]  M. Lanphere,et al.  Two High-Pressure Metamorphic Events in NE Oman: Evidence from 40Ar/39Ar Dating and Petrological Data , 1992, The Journal of Geology.

[121]  Javier F. Pacheco,et al.  Seismic moment catalog of large shallow earthquakes, 1900 to 1989 , 1992, Bulletin of the Seismological Society of America.

[122]  B. Hacker The role of deformation in the formation of metamorphic gradients: Ridge subduction beneath the Oman Ophiolite , 1991 .

[123]  S. Peacock Numerical simulation of metamorphic pressure‐temperature‐time paths and fluid production in subducting slabs , 1990 .

[124]  B. Hacker Simulation of the metamorphic and deformational history of the metamorphic sole of the Oman Ophiolite , 1990 .

[125]  B. Goffé,et al.  A case of obduction-related high-pressure, low-temperature metamorphism in upper crustal nappes, Arabian continental margin, Oman: P-T paths and kinematic interpretation , 1988 .

[126]  H. Whitechurch,et al.  KAr and 40Ar39Ar study of metamorphic rocks associated with the Oman ophiolite: Tectonic implications , 1988 .

[127]  A. Robertson Upper Cretaceous Muti Formation: transition of a Mesozoic nate platform to a foreland basin in the Oman Mountains , 1987 .

[128]  R. Jarrard Relations among subduction parameters , 1986 .

[129]  J. Suppe,et al.  Mechanics of fold-and-thrust belts and accretionary wedges , 1983 .

[130]  P. Lovelock,et al.  Ordovician rocks in the oman mountains the amdeh formation , 1981 .

[131]  James E. Wright,et al.  Uranium-lead isotopic ages of the Samail Ophiolite, Oman, with applications to Tethyan ocean ridge tectonics , 1981 .

[132]  E. Ghent,et al.  Metamorphism at the base of the Samail Ophiolite, southeastern Oman Mountains , 1981 .

[133]  S. Lippard,et al.  Volcanic rocks beneath the Semail Ophiolite nappe in the northern Oman mountains and their significance in the Mesozoic evolution of Tethys , 1980, Journal of the Geological Society.

[134]  J. Dewey Ancient plate margins: Some observations , 1976 .

[135]  W. Dickinson Widths of modern arc-trench gaps proportional to past duration of igneous activity in associated magmatic arcs , 1973 .

[136]  J. Dewey,et al.  Origin and Emplacement of the Ophiolite Suite: Appalachian Ophiolites in Newfoundland , 1971 .

[137]  C. Jaupart,et al.  Heat Flow and Thermal Structure of the Lithosphere , 2015 .

[138]  E. Lundin,et al.  RESEARCH FOCUS: Hyperextended continental margins—Knowns and unknowns , 2015 .

[139]  I. Abbasi,et al.  Late Cretaceous Conglomerates of the Qahlah Formation, north Oman , 2014 .

[140]  M. Searle,et al.  Structure of the metamorphic sole to the Oman Ophiolite, Sumeini Window and Wadi Tayyin: implications for ophiolite obduction processes , 2014 .

[141]  S. Nasir,et al.  Evolution of a very deeply subducted metasediment from As Sifah, northeastern coast of Oman , 2013 .

[142]  A. Zanchi,et al.  The drift history of Iran from the Ordovician to the Triassic , 2009 .

[143]  P. Reiners Zircon (U-Th)/He Thermochronometry , 2005 .

[144]  B. Hacker,et al.  Continental collisions and the creation of ultrahigh-pressure terranes: Petrology and thermochronology of nappes in the central Scandinavian Caledonides , 2005 .

[145]  M. Searle,et al.  Subduction zone polarity in the Oman Mountains: implications for ophiolite emplacement , 2003, Geological Society, London, Special Publications.

[146]  W. Kiessling,et al.  Paleoreefs—A Database on Phanerozoic reefs , 2002 .

[147]  D. Gray,et al.  Geological and geochronological constraints on the exhumation of a high-pressure metamorphic terrane, Oman , 1999, Geological Society, London, Special Publications.

[148]  S. Willett,et al.  Exhumation processes , 1999, Geological Society, London, Special Publications.

[149]  F. Blanckenburg,et al.  Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens , 1995 .

[150]  A. El-Shazly Petrology of lawsonite‐, pumpellyite‐ and sodic amphibole‐bearing metabasites from north‐east Oman , 1994 .

[151]  D. Boote,et al.  Structural evolution of the Suneinah Foreland, Central Oman Mountains , 1990, Geological Society, London, Special Publications.

[152]  M. Beurrier,et al.  The Hawasina Nappes: stratigraphy, palaeogeography and structural evolution of a fragment of the south-Tethyan passive continental margin , 1990, Geological Society, London, Special Publications.

[153]  R. Coleman,et al.  Metamorphism in the Oman Mountains in relation to the Semail ophiolite emplacement , 1990, Geological Society, London, Special Publications.

[154]  J. Smewing,et al.  Maastrichtian to early Tertiary stratigraphy and palaeogeography of the Central and Northern Oman Mountains , 1990, Geological Society, London, Special Publications.

[155]  S. Hanna,et al.  The tectonic evolution of pre-Permian rocks, Central and Southeastern Oman Mountains , 1990, Geological Society, London, Special Publications.

[156]  J. Warburton,et al.  The evolution of the Oman Mountains Foreland Basin , 1990, Geological Society, London, Special Publications.

[157]  M. Casey,et al.  A new tectonic model for the Helvetic nappes , 1989, Geological Society, London, Special Publications.

[158]  M. Rosi,et al.  Explanatory notes to the geological map , 1987 .

[159]  John F. Casey,et al.  Initiation of subduction zones along transform and accreting plate boundaries, triple-junction evolution, and forearc spreading centres—implications for ophiolitic geology and obduction , 1984, Geological Society, London, Special Publications.

[160]  M. Searle,et al.  “Oman Exotics”—Oceanic carbonate build-ups associated with the early stages of continental rifting , 1982 .

[161]  J. Malpas,et al.  Structure and metamorphism of rocks beneath the Semail ophiolite of Oman and their significance in ophiolite obduction , 1980, Transactions of the Royal Society of Edinburgh: Earth Sciences.