Synchronizing coupled semiconductor lasers under general coupling topologies

We consider synchronization of coupled semiconductor lasers modeled by coupled Lang and Kobayashi equations. We first analyze decoupled laser stability, and then characterize synchronization conditions of coupled laser dynamics. We rigorously prove that the coupled system locally synchronizes to a limit cycle under the coupling topology of an undirected connected graph with equal in-degrees. Graph and systems theory is used in synchronization analysis. The results not only contribute to analytic understanding of semiconductor lasers, but also advance cooperative control by providing a realworld system of coupled limit-cycle oscillators.

[1]  Thomas Erneux,et al.  LOCALIZED SYNCHRONIZATION IN TWO COUPLED NONIDENTICAL SEMICONDUCTOR LASERS , 1997 .

[2]  H. Winful,et al.  Stability of phase locking in coupled semiconductor laser arrays , 1988 .

[3]  G. Kraepelin,et al.  A. T. Winfree, The Geometry of Biological Time (Biomathematics, Vol.8). 530 S., 290 Abb. Berlin‐Heidelberg‐New‐York 1980. Springer‐Verlag. DM 59,50 , 1981 .

[4]  H. Winful,et al.  Dynamics of phase-locked semiconductor laser arrays , 1988 .

[5]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[6]  Yi Guo,et al.  Nonlinear dynamics and synchronization of an array of single mode laser diodes in external cavity subject to current modulation , 2014 .

[7]  Thomas Erneux,et al.  Quasiperiodic synchronization for two delay-coupled semiconductor lasers , 1999 .

[8]  Pere Colet,et al.  Controlling the unstable emission of a semiconductor laser subject to conventional optical feedback with a filtered feedback branch , 2009 .

[9]  P Mandel,et al.  Dynamics of a semiconductor laser array with delayed global coupling. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  P. Colet,et al.  Information Encoding and Decoding Using Unidirectionally Coupled Chaotic Semiconductor Lasers Subject to Filtered Optical Feedback , 2009, IEEE Journal of Quantum Electronics.

[11]  B Liu,et al.  Coherent addition of high power laser diode array with a V-shape external Talbot cavity. , 2008, Optics express.

[12]  C. R. Mirasso,et al.  COHERENCE AND SYNCHRONIZATION IN DIODE-LASER ARRAYS WITH DELAYED GLOBAL COUPLING , 1999 .

[13]  Dan Botez,et al.  Diode laser arrays , 2005, Optical Society of America Annual Meeting.

[14]  P. Colet,et al.  Chaos-Based Optical Communications: Encryption Versus Nonlinear Filtering , 2010, IEEE Journal of Quantum Electronics.

[15]  R. Lang,et al.  External optical feedback effects on semiconductor injection laser properties , 1980 .

[16]  Roy,et al.  Coherence and phase dynamics of spatially coupled solid-state lasers. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[17]  Steven H. Strogatz,et al.  Dynamics of a Large Array of Globally Coupled Lasers with Distributed frequencies , 2001, Int. J. Bifurc. Chaos.

[18]  A. Winfree The geometry of biological time , 1991 .

[19]  Kennedy,et al.  Entrainment of solid-state laser arrays. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[20]  Mandel,et al.  Global coupling with time delay in an array of semiconductor lasers , 2000, Physical review letters.

[21]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.