Bayesian decision theory, the maximum local mass estimate, and color constancy

Vision algorithms are often developed in a Bayesian framework. Two estimators are commonly used: maximum a posteriori (MAP), and minimum mean squared error (MMSE). We argue that neither is appropriate for perception problems. The MAP estimator makes insufficient use of structure in the posterior probability. The squared error penalty of the MMSE estimator does not reflect typical penalties. We describe a new estimator, which we call maximum local mass (MLM) [10, 26, 65], which integrates the local probability density. The MLM method is sensitive to local structure of the posterior probability, which MAP is not. The new method uses an optimality criterion that is appropriate for perception tasks: it finds the most probable approximately correct answer. For the case of low observation noise, we provide an efficient approximation. We apply this new estimator to color constancy. An unknown illuminant falls on surfaces of unknown colors. We seek to estimate both the illuminant spectrum and the surface spectra from photosensor responses which depend on the product of the unknown spectra. In simulations, we show that the MLM method performs better than the MAP estimator, and better than two standard color constancy algorithms. The MLM method may prove useful in other vision problems as well.<<ETX>>

[1]  Michael J. Black,et al.  A framework for the robust estimation of optical flow , 1993, 1993 (4th) International Conference on Computer Vision.

[2]  D. B. Judd,et al.  Spectral Distribution of Typical Daylight as a Function of Correlated Color Temperature , 1964 .

[3]  S. Gull Bayesian Inductive Inference and Maximum Entropy , 1988 .

[4]  S. McKee,et al.  Quantitative studies in retinex theory a comparison between theoretical predictions and observer responses to the “color mondrian” experiments , 1976, Vision Research.

[5]  Dorothy Nickerson,et al.  Tristimulus specification of the Munsell book of color from spectrophotometric measurements , 1943 .

[6]  William T. Freeman,et al.  The generic viewpoint assumption in a framework for visual perception , 1994, Nature.

[7]  William T. Freeman,et al.  Bayesian method for recovering surface and illuminant properties from photosensor responses , 1994, Electronic Imaging.

[8]  G. Buchsbaum A spatial processor model for object colour perception , 1980 .

[9]  J J Koenderink,et al.  Affine structure from motion. , 1991, Journal of the Optical Society of America. A, Optics and image science.

[10]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[11]  David H. Brainard,et al.  Calibrated processing of image color , 1990 .

[12]  Geoffrey E. Hinton,et al.  A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..

[13]  Heinrich H. Bülthoff,et al.  Bayesian Models for Seeing Shapes and Depth , 1990 .

[14]  David Lindley,et al.  Bayesian Statistics, a Review , 1987 .

[15]  E. Land The retinex theory of color vision. , 1977, Scientific American.

[16]  E H Land,et al.  Recent advances in retinex theory and some implications for cortical computations: color vision and the natural image. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[17]  P. Laplace Théorie analytique des probabilités , 1995 .

[18]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[19]  David J. Heeger,et al.  Model of visual motion sensing , 1994 .

[20]  A. Yuille,et al.  Bayesian decision theory and psychophysics , 1996 .

[21]  L. M. M.-T. Theory of Probability , 1929, Nature.

[22]  David A. Forsyth,et al.  A Novel Approach To Colour Constancy , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[23]  H. Jeffreys,et al.  Theory of probability , 1896 .

[24]  William T. Freeman,et al.  The generic viewpoint assumption in a Bayesian framework , 1996 .

[25]  Brian A. Wandell,et al.  The Synthesis and Analysis of Color Images , 1992, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Jussi Parkkinen,et al.  Vector-subspace model for color representation , 1990 .

[27]  K. S. Gibson,et al.  Tristimulus Specification of the Munsell Book of Color from Spectrophotometric Measurements , 1943 .

[28]  Rory A. Fisher,et al.  Statistical methods and scientific inference. , 1957 .

[29]  J. Skilling Classic Maximum Entropy , 1989 .

[30]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[31]  A. Jepson,et al.  The computation of color constant descriptors in chromatic images , 1989 .

[32]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Demetri Terzopoulos,et al.  Regularization of Inverse Visual Problems Involving Discontinuities , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  B. Wandell,et al.  Color Constancy: From Physics to Appearance , 1993 .

[35]  A.H. Haddad,et al.  Applied optimal estimation , 1976, Proceedings of the IEEE.

[36]  H. J. Trussell,et al.  Estimation of illumination for color correction , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[37]  J. Pokorny,et al.  Full-spectrum cone sensitivity functions for X-chromosome-linked anomalous trichromats. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[38]  R. Shepard,et al.  Toward a universal law of generalization for psychological science. , 1987, Science.

[39]  G. C. Tiao,et al.  A Bayesian approach to the importance of assumptions applied to the comparison of variances , 1964 .

[40]  D. Kersten Transparency and the cooperative computation of scene attributes , 1991 .

[41]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[42]  Alex Pentland,et al.  Segmentation by minimal description , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[43]  David C. Knill,et al.  Introduction: a Bayesian formulation of visual perception , 1996 .

[44]  David G. Lowe,et al.  Learning object recognition models from images , 1993, 1993 (4th) International Conference on Computer Vision.

[45]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[46]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[47]  William T. Freeman,et al.  Exploiting the generic view assumption to estimate scene parameters , 1993, 1993 (4th) International Conference on Computer Vision.

[48]  Alex Pentland,et al.  Local Shading Analysis , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[49]  L. Maloney,et al.  Color constancy: a method for recovering surface spectral reflectance. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[50]  L. Maloney Evaluation of linear models of surface spectral reflectance with small numbers of parameters. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[51]  D H Brainard,et al.  Analysis of the retinex theory of color vision. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[52]  P. Belhumeur A computational theory for binocular stereopsis , 1996 .