Parallel anisotropic mesh refinement with dynamic load balancing for transonic flow simulations

*e-mail: sgepner@meil.pw.edu.pl Abstract. The present paper discusses an effective adaptive methods suited for use in parallel environment. An in-house, parallel flow solver based on the residual distribution method is used for the solution of flow problems. Simulation is parallelized based on the domain decomposition approach. Adaptive changes to the mesh are achieved by two distinctive techniques. Mesh refinement is performed by dividing element edges and a subsequent application of pre defined splitting templates. Mesh regularization and derefinement is achieved through topology conserving node movement (r-adaptivity). Parallel implementations of an adaptive use the dynamic load balancing technique.

[1]  Stanislaw Gepner,et al.  Dynamic Load Balancing for Adaptive Parallel Flow Problems , 2009, PPAM.

[2]  Dimitri J. Mavriplis,et al.  Adaptive mesh generation for viscous flows using delaunay triangulation , 1990 .

[3]  David L. Darmofal,et al.  Parallel Anisotropic Tetrahedral Adaptation , 2008 .

[4]  Frédéric Alauzet,et al.  Fully anisotropic goal-oriented mesh adaptation for 3D steady Euler equations , 2010, J. Comput. Phys..

[5]  E. Schönhardt,et al.  Über die Zerlegung von Dreieckspolyedern in Tetraeder , 1928 .

[6]  Herman Deconinck,et al.  Construction and analysis of compact residual discretizations for conservation laws on unstructured meshes , 2005 .

[7]  Karen D. Devinea,et al.  New Challenges in Dynamic Load Balancing , 2004 .

[8]  Robert Russell,et al.  An h-r Moving Mesh Method for One-Dimensional Time-Dependent PDEs , 2012, IMR.

[9]  Jacob Waltz,et al.  Parallel adaptive refinement for unsteady flow calculations on 3D unstructured grids , 2004 .

[10]  Stanislaw Gepner,et al.  Parallel Efficiency of an Adaptive, Dynamically Balanced Flow Solver , 2013, PPAM.

[11]  J. D. Teresco,et al.  New challanges in dynamic load balancing , 2005 .

[12]  An anisotropic adaptation for simulation of compressible flows , 2002 .

[13]  Ralf Hartmann,et al.  Adjoint Consistency Analysis of Discontinuous Galerkin Discretizations , 2007, SIAM J. Numer. Anal..

[15]  Paul-Louis George,et al.  Delaunay triangulation and meshing : application to finite elements , 1998 .

[16]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[17]  Douglas N. Arnold,et al.  Locally Adapted Tetrahedral Meshes Using Bisection , 2000, SIAM Journal on Scientific Computing.

[18]  J. Remacle,et al.  A mesh adaptation framework for dealing with large deforming meshes , 2010 .

[19]  Dieter Kranzlmüller,et al.  Parallel Grid Adaptation and Dynamic Load Balancing for a CFD Solver , 2005, PVM/MPI.

[20]  Dimitris Drikakis,et al.  Parallel performance of overlapping mesh technique for compressible flows , 2001, Future Gener. Comput. Syst..

[21]  Mark S. Shephard,et al.  3D anisotropic mesh adaptation by mesh modification , 2005 .

[22]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[23]  J. Peiro,et al.  Adaptive remeshing for three-dimensional compressible flow computations , 1992 .

[24]  Frédéric Alauzet,et al.  On the use of anisotropic a posteriori error estimators for the adaptative solution of 3D inviscid compressible flows , 2009 .

[25]  Adrien Loseille,et al.  On 3D Anisotropic Local Remeshing for Surface, Volume and Boundary Layers , 2009, IMR.

[26]  Simona Perotto,et al.  Reliability and efficiency of an anisotropic zienkiewicz-zhu error estimator , 2006 .

[27]  L. Mesaros,et al.  Multi-dimensional fluctuation splitting schemes for the Euler equations on unstructured grids. , 1995 .

[28]  Frédéric Hecht,et al.  New Progress in Anisotropic Grid Adaptation for Inviscid and Viscous Flows Simulations , 1995 .

[29]  Leonid Oliker,et al.  Parallel tetrahedral mesh adaptation with dynamic load balancing , 2013, Parallel Comput..

[30]  Robert D. Russell,et al.  Adaptivity with moving grids , 2009, Acta Numerica.

[31]  Andreas Emil Feldmann Fast Balanced Partitioning Is Hard Even on Grids and Trees , 2012, MFCS.

[32]  Stanislaw Gepner,et al.  Dynamic Load Balancing for Parallelization of Adaptive Algorithms , 2010 .

[33]  L. Tourrette,et al.  Adjoint–Based Correction of Aerodynamic Coefficients on Structured Multiblock Grids , 2010 .

[34]  D. Venditti,et al.  Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows , 2003 .

[35]  Oh Joon Kwon,et al.  A parallel unstructured dynamic mesh adaptation algorithm for 3‐D unsteady flows , 2005 .

[36]  Frédéric Alauzet,et al.  Anisotropic Mesh Adaptation for Transient Flows Simulations , 2003, IMR.

[37]  Amirtham Rajagopal,et al.  A combined r-h adaptive strategy based on material forces and error assessment for plane problems and bimaterial interfaces , 2007 .

[38]  M. Rivara NEW LONGEST-EDGE ALGORITHMS FOR THE REFINEMENT AND/OR IMPROVEMENT OF UNSTRUCTURED TRIANGULATIONS , 1997 .

[39]  Bruce Hendrickson,et al.  Dynamic load balancing in computational mechanics , 2000 .

[40]  Sachin B. Patkar,et al.  An efficient practical heuristic for good ratio-cut partitioning , 2003, 16th International Conference on VLSI Design, 2003. Proceedings..

[41]  Raimund Seidel,et al.  On the difficulty of triangulating three-dimensional Nonconvex Polyhedra , 1992, Discret. Comput. Geom..

[42]  Frédéric Alauzet,et al.  Size gradation control of anisotropic meshes , 2010 .

[43]  Pascal Frey,et al.  Transient fixed point‐based unstructured mesh adaptation , 2003 .

[44]  P. Steinmann,et al.  Energy-based r-adaptivity: a solution strategy and applications to fracture mechanics , 2007 .

[45]  J. Majewski,et al.  Anisotropic Mesh Adaptation in the Presence of Complex Boundaries , 2010 .

[46]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[47]  F. Chalot Goal-Oriented Mesh Adaptation in an Industrial Stabilized Finite Element Navier-Stokes Code , 2010 .

[48]  Vincent Heuveline,et al.  Simulation of tropical-cyclone-like vortices in shallow-water ICON-hex using goal-oriented r-adaptivity , 2014 .

[49]  Anisotropic solution-adaptive technique applied to simulations of steady and unsteady compressible flows , 2009 .

[50]  Frédéric Alauzet,et al.  Parallel anisotropic 3D mesh adaptation by mesh modification , 2006, Engineering with Computers.

[51]  J. Majewski,et al.  PARALLEL PERFORMANCE OF ADAPTIVE ALGORITHMS WITH DYNAMIC LOAD BALANCING , 2010 .

[52]  Tamara G. Kolda,et al.  Graph partitioning models for parallel computing , 2000, Parallel Comput..

[53]  Eberhard Bänsch,et al.  Local mesh refinement in 2 and 3 dimensions , 1991, IMPACT Comput. Sci. Eng..

[54]  Rémi Abgrall,et al.  Status of multidimensional upwind residual distribution schemes and applications in aeronautics , 2000 .

[55]  Frédéric Hecht,et al.  Anisotropic unstructured mesh adaption for flow simulations , 1997 .

[56]  Simona Perotto,et al.  An anisotropic Zienkiewicz–Zhu-type error estimator for 3D applications , 2011 .

[57]  Pascal Frey,et al.  Anisotropic mesh adaptation for CFD computations , 2005 .

[58]  Eorge,et al.  Unstructured Graph Partitioning and Sparse Matrix Ordering System Version 2 . 0 , 1995 .