High-throughput electronic band structure calculations: Challenges and tools

The article is devoted to the discussion of the high-throughput approach to band structures calculations. We present scientific and computational challenges as well as solutions relying on the developed framework (Automatic Flow, AFLOW/ACONVASP). The key factors of the method are the standardization and the robustness of the procedures. Two scenarios are relevant: (1) independent users generating databases in their own computational systems (off-line approach) and (2) teamed users sharing computational information based on a common ground (on-line approach). Both cases are integrated in the framework: for off-line approaches, the standardization is automatic and fully integrated for the 14 Bravais lattices, the primitive and conventional unit cells, and the coordinates of the high symmetry k-path in the Brillouin zones. For on-line tasks, the framework offers an expandable web interface, where the user can prepare and set up calculations following the proposed standard. Few examples of band structures are included. LSDA+U parameters (U, J) are also presented for Nd, Sm, and Eu.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  H. Koinuma,et al.  Combinatorial solid-state chemistry of inorganic materials , 2004, Nature materials.

[3]  P. A. Cox,et al.  Study of the 4f and valence band density of states in rare-earth metals. II. Experiment and results , 1981 .

[4]  T Jeong,et al.  Electronic structure and magnetism of antiferromagnetic heavy fermion compound YbSi , 2006 .

[5]  Peter G. Schultz,et al.  A Combinatorial Approach to Materials Discovery , 1995, Science.

[6]  G. Ceder,et al.  Identification of cathode materials for lithium batteries guided by first-principles calculations , 1998, Nature.

[7]  Alexei A. Maradudin,et al.  Space groups for solid state scientists , 1979 .

[8]  Stefano Curtarolo,et al.  Prediction of different crystal structure phases in metal borides: A lithium monoboride analog toMgB2 , 2006 .

[9]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[10]  Stefano Curtarolo,et al.  Thermodynamic stabilities of ternary metal borides: An ab initio guide for synthesizing layered superconductors , 2008, 0806.0061.

[11]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[12]  Stefano Curtarolo,et al.  Structures and topological transitions of hydrocarbon films on quasicrystalline surfaces. , 2008, Physical review letters.

[13]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[14]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[15]  J. Nørskov,et al.  Towards the computational design of solid catalysts. , 2009, Nature chemistry.

[16]  E. V. Chulkov,et al.  Surface electronic structures of La(0001) and Lu(0001) , 2006 .

[17]  A. Casher,et al.  The irreducible representations of space groups , 1969 .

[18]  Stefano Curtarolo,et al.  The new face of rhodium alloys: revealing ordered structures from first principles. , 2010, Journal of the American Chemical Society.

[19]  Thomas Bligaard,et al.  Pareto-optimal alloys , 2003 .

[20]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[21]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[22]  Matteo Cococcioni,et al.  Extended DFT + U + V method with on-site and inter-site electronic interactions , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[23]  Vladimir I. Anisimov,et al.  Calculation of magneto-optical properties for 4f systems: LSDA + Hubbard U results , 1995 .

[25]  H. Harima,et al.  LDA+U method applied for f-electron systems , 2001 .

[26]  Shuichi Iwata,et al.  The Pauling File, Binaries Edition , 2004 .

[27]  Donald J. Siegel,et al.  Thermodynamic guidelines for the prediction of hydrogen storage reactions and their application to destabilized hydride mixtures , 2007, 0709.3326.

[28]  Damien Stehlé,et al.  Low-dimensional lattice basis reduction revisited , 2004, TALG.

[29]  Donald J. Siegel,et al.  Discovery of novel hydrogen storage materials: an atomic scale computational approach , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[30]  Vincent H. Crespi,et al.  Predictions of new crystalline states for assemblies of nanoparticles: Perovskite analogues and 3-d arrays of self-assembled nanowires , 2003 .

[31]  J. Nørskov,et al.  Combined electronic structure and evolutionary search approach to materials design. , 2002, Physical review letters.

[32]  I. Takeuchi,et al.  Role of high-throughput characterization tools in combinatorial materials science , 2004 .

[33]  Anubhav Jain,et al.  Finding Nature’s Missing Ternary Oxide Compounds Using Machine Learning and Density Functional Theory , 2010 .

[34]  V. L. Karen,et al.  NIST materials science databases , 1993 .

[35]  Vince Murphy,et al.  A fully integrated high-throughput screening methodology for the discovery of new polyolefin catalysts: discovery of a new class of high temperature single-site group (IV) copolymerization catalysts. , 2003, Journal of the American Chemical Society.

[36]  V. N. Antonov,et al.  Electronic structure and magneto-optical Kerr effect of Tm monochalcogenides , 2001 .

[37]  J. Zaanen,et al.  Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.

[38]  O. V. Kovalev,et al.  Irreducible representations of the space groups , 1965 .

[39]  David Smith,et al.  Combinatorial discovery of metal co-catalysts for the carbonylation of phenol , 2003 .

[40]  Stefano Curtarolo,et al.  High-throughput and data mining with ab initio methods , 2004 .

[41]  A. Cracknell,et al.  Van Hove singularities and zero-slope points in crystals , 1973 .

[42]  Stefano Curtarolo,et al.  Uncovering compounds by synergy of cluster expansion and high-throughput methods. , 2010, Journal of the American Chemical Society.

[43]  A. Cracknell,et al.  The mathematical theory of symmetry in solids;: Representation theory for point groups and space groups, , 1972 .

[44]  Gerbrand Ceder,et al.  Predicting crystal structure by merging data mining with quantum mechanics , 2006, Nature materials.

[45]  Thomas Bligaard,et al.  Toward computational screening in heterogeneous catalysis: Pareto-optimal methanation catalysts , 2006 .

[46]  J. Zak,et al.  The Irreducible representations of space groups , 1969 .

[47]  Pierre Villars,et al.  Report of the working group on crystal phase identifiers. , 2005, Acta crystallographica. Section A, Foundations of crystallography.

[48]  Yong Jiang,et al.  Density-functional calculation of CeO2 surfaces and prediction of effects of oxygen partial pressure and temperature on stabilities. , 2005, The Journal of chemical physics.

[49]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[50]  Stefano Curtarolo,et al.  Gas adsorption on quasicrystalline surfaces , 2008 .

[51]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[52]  S. Curtarolo,et al.  Comparative Study of Nonproportionality and Electronic Band Structures Features in Scintillator Materials , 2009, IEEE Transactions on Nuclear Science.

[53]  Christopher M Wolverton,et al.  First‐Principles Determination of Multicomponent Hydride Phase Diagrams: Application to the Li‐Mg‐N‐H System , 2007 .

[54]  Stefano Curtarolo,et al.  Accuracy of ab initio methods in predicting the crystal structures of metals: A review of 80 binary alloys , 2005, cond-mat/0502465.

[55]  Kristin A. Persson,et al.  Predicting crystal structures with data mining of quantum calculations. , 2003, Physical review letters.

[56]  P. Luksch,et al.  New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. , 2002, Acta crystallographica. Section B, Structural science.

[57]  V. L. Karen,et al.  Inorganic crystal structure database: new developments , 2002 .

[58]  Amr Elmasry,et al.  Multipartite priority queues , 2008, TALG.

[59]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[60]  Stanley C. Miller,et al.  Tables of irreducible representations of space groups and co-representations of magnetic space groups , 1967 .

[61]  Stefano Curtarolo,et al.  Search for highTcin layered structures: The case of LiB , 2007 .

[62]  F. Aryasetiawan,et al.  The GW method , 1997, cond-mat/9712013.