Comparative study of optimized purge flow in a CO2 capture system using different sorbents

[1]  H. Kleykamp Enthalpies and heat capacities of Li2SiO3 and Li2ZrO3 between 298 and 1400 K by drop calorimetry , 1994 .

[2]  H. Kleykamp Enthalpy, heat capacity, second-order transitions and enthalpyof fusion of Li4SiO4 by high-temperature calorimetry , 1996 .

[3]  T. Shimizu,et al.  A twin fluid-bed reactor for removal of CO2 from combustion processes , 1999 .

[4]  K. Nakagawa,et al.  New Series of Lithium Containing Complex Oxides, Lithium Silicates, for Application as a High Temperature CO2 Absorbent , 2001 .

[5]  H. Herzog Peer Reviewed: What Future for Carbon Capture and Sequestration? , 2001 .

[6]  L. Fan,et al.  Carbonation−Calcination Cycle Using High Reactivity Calcium Oxide for Carbon Dioxide Separation from Flue Gas , 2002 .

[7]  J. C. Abanades,et al.  Conversion Limits in the Reaction of CO2 with Lime , 2003 .

[8]  Ya Liang Carbon dioxide capture from flue gas using regenerable sodium-based sorbents , 2003 .

[9]  Y. S. Lin,et al.  Kinetics of carbon dioxide sorption on potassium-doped lithium zirconate , 2003 .

[10]  E. Rubin,et al.  Sorbent Cost and Performance in CO2 Capture Systems , 2004 .

[11]  E. J. Anthony,et al.  Fluidized bed combustion systems integrating CO2 capture with CaO. , 2005, Environmental science & technology.

[12]  D. Harrison The role of solids in CO2 capture: A mini review , 2005 .

[13]  Edward S. Rubin,et al.  Cost and performance of fossil fuel power plants with CO2 capture and storage , 2007 .

[14]  L. Kourková,et al.  Heat capacity, enthalpy and entropy of Li2CO3 at 303.15–563.15 K , 2007 .

[15]  P. Fennell,et al.  Regeneration of sintered limestone sorbents for the sequestration of CO2 from combustion and other systems , 2007 .

[16]  J. C. Abanades,et al.  Cost structure of a postcombustion CO2 capture system using CaO. , 2007, Environmental science & technology.

[17]  Don W. Green,et al.  Perry's Chemical Engineers' Handbook , 2007 .

[18]  Luis M. Romeo,et al.  Designing a supercritical steam cycle to integrate the energy requirements of CO2 amine scrubbing , 2008 .

[19]  E. Anthony Solid looping cycles: A new technology for coal conversion , 2008 .

[20]  J. C. Abanades,et al.  Heat requirements in a calciner of CaCO3 integrated in a CO2 capture system using CaO , 2008 .

[21]  F. Zeman Effect of steam hydration on performance of lime sorbent for CO2 capture , 2008 .

[22]  V. Manović,et al.  Sulphation and carbonation properties of hydrated sorbents from a fluidized bed CO2 looping cycle reactor , 2008 .

[23]  S. H. Kim,et al.  Sodium-based dry regenerable sorbent for carbon dioxide capture from power plant flue gas , 2008 .

[24]  A. Sánchez-Biezma,et al.  Oxyfuel carbonation/calcination cycle for low cost CO2 capture in existing power plants , 2008 .

[25]  M. Mazzotti,et al.  Precipitation in the Mg-carbonate system—effects of temperature and CO2 pressure , 2008 .

[26]  L. Romeo,et al.  Optimizing make-up flow in a CO2 capture system using CaO , 2009 .