Discrete Aspects of Stochastic Geometry

Stochastic geometry studies randomly generated geometric objects. The present chapter deals with some discrete aspects of stochastic geometry. We describe work that has been done on finite point sets, their convex hulls, infinite discrete point sets, arrangements of flats, and tessellations of space, under various assumptions of randomness. Typical results concern expectations of geometrically defined random variables, or probabilities of events defined by random geometric configurations. The selection of topics must necessarily be restrictive. We leave out the large number of special elementary geometric probability problems that can be solved explicitly by direct, though possibly intricate, analytic calculations. We pay special attention to either asymptotic results, where the number of points considered tends to infinity, or to inequalities, or to identities where the proofs involve more delicate geometric or combinatorial arguments. The close ties of discrete geometry with convexity are reflected: we consider convex hulls of random points, intersections of random halfspaces, and tessellations of space into convex sets. There are many topics that one might classify under ‘discrete aspects of stochastic geometry’, such as optimization problems with random data, the average-case analysis of geometric algorithms, random geometric graphs, random coverings, percolation, shape theory, and several others. All of these have to be excluded here.

[1]  A. Baddeley Stochastic geometry and image analysis , 1984 .

[2]  Imre Bárány A note on Sylvester's four-point problem , 2001 .

[3]  Alessandro Zinani,et al.  The Expected Volume of a Tetrahedron whose Vertices are Chosen at Random in the Interior of a Cube , 2003 .

[4]  I. Barany,et al.  Central limit theorems for Gaussian polytopes , 2006 .

[5]  Bruno Massé,et al.  On the LLN for the number of vertices of a random convex hull , 2000, Advances in Applied Probability.

[6]  Daniel Hug,et al.  Gaussian polytopes: variances and limit theorems , 2005, Advances in Applied Probability.

[7]  K. Ball CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .

[8]  V. Milman,et al.  Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space , 1989 .

[9]  I. Bárány,et al.  Empty Simplices in Euclidean Space , 1987, Canadian Mathematical Bulletin.

[10]  Luc Devroye,et al.  How to reduce the average complexity of convex hull finding algorithms , 1981 .

[11]  Matthias Reitzner,et al.  Random polytopes and the Efron--Stein jackknife inequality , 2003 .

[12]  L. Santaló Integral geometry and geometric probability , 1976 .

[13]  K. Borgwardt A Sharp Upper Bound for the Expected Number of Shadow Vertices in Lp-Polyhedra Under Orthogonal Projection on Two-Dimensional Planes , 1999 .

[14]  Ron Shamir,et al.  Probabilistic Analysis in Linear Programming , 1993 .

[15]  Van Vu,et al.  Central Limit Theorems for Random Polytopes in a Smooth Convex Set , 2005 .

[16]  Rex A. Dwyer,et al.  Average-case analysis of algorithms for convex hulls and Voronoi diagrams , 1988 .

[17]  Piet Groeneboom,et al.  Limit theorems for convex hulls , 1988 .

[18]  Christian Buchta,et al.  On nonnegative solutions of random systems of linear inequalities , 1987, Discret. Comput. Geom..

[19]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[20]  D. Chu,et al.  Random r-content of an r-simplex from beta-type-2 random points , 1993 .

[21]  Fernando Affentranger,et al.  The expected volume of a random polytope in a ball * , 1988 .

[22]  Rolf Schneider,et al.  Random approximation of convex sets * , 1988 .

[23]  K. Borgwardt The Simplex Method: A Probabilistic Analysis , 1986 .

[24]  Werner Schindler,et al.  On the Distribution of Order Types , 1991, Comput. Geom..

[25]  R. Schneider,et al.  CHAPTER 5.1 – Integral Geometry , 1993 .

[26]  P. A. P. Moran,et al.  A second note on recent research in geometrical probability , 1969, Advances in Applied Probability.

[27]  Matthias Reitzner,et al.  The Floating Body and the Equiaffine Inner Parallel Curve of a Plane Convex Body , 2001 .

[28]  R. E. Miles Poisson flats in Euclidean spaces Part II: Homogeneous Poisson flats and the complementary theorem , 1971, Advances in Applied Probability.

[29]  Matthias Reitzner,et al.  Central limit theorems for random polytopes , 2005 .

[30]  Rolf Schneider,et al.  Isoperimetric inequalities for infinite hyperplane systems , 1995, Discret. Comput. Geom..

[31]  H. Bräker,et al.  On the area and perimeter of a random convex hull in a bounded convex set , 1998 .

[32]  C. Buchta,et al.  Stochastische Approximation konvexer Polygone , 1984 .

[33]  Daniel Hug Random Mosaics , 2004 .

[34]  Rolf Schneider,et al.  Random hyperplanes meeting a convex body , 1982 .

[35]  Zoltán Füredi,et al.  On the shape of the convex hull of random points , 1988 .

[36]  Karl-Heinz Küfer On the Approximation of a Ball by Random Polytopes , 1994 .

[37]  Irene Hueter,et al.  Random convex hulls: a variance revisited , 2004, Advances in Applied Probability.

[38]  Daniel A. Klain,et al.  Introduction to Geometric Probability , 1997 .

[39]  Günter Rote,et al.  A Central Limit Theorem for Convex Chains in the Square , 2000, Discret. Comput. Geom..

[40]  R. Ambartzumian Factorization calculus and geometric probability , 1990 .

[41]  Rolf Schneider,et al.  Random polytopes in a convex body , 1980 .

[42]  Tomasz Schreiber,et al.  Large deviation probabilities for the number of vertices of random polytopes in the ball , 2006, Advances in Applied Probability.

[43]  Adrian Baddeley,et al.  A fourth note on recent research in geometrical probability , 1977 .

[44]  Fernando Affentranger Aproximación aleatoria de cuerpos convexos , 1992 .

[45]  C. Schütt,et al.  Polytopes with Vertices Chosen Randomly from the Boundary of a Convex Body , 2003 .

[46]  J. G. Wendel A Problem in Geometric Probability. , 1962 .

[47]  Andrew G. Glen,et al.  APPL , 2001 .

[48]  Emo Welzl,et al.  A Continuous Analogue of the Upper Bound Theorem , 2001, Discret. Comput. Geom..

[49]  J. Mecke On the Intersection Density of Flat Processes , 1991 .

[50]  Irene Hueter,et al.  Limit theorems for the convex hull of random points in higher dimensions , 1999 .

[51]  Imre Bfir,et al.  Intrinsic volumes and f-vectors of random polytopes , 1989 .

[52]  Imre Bárány,et al.  Random polytopes , 2006 .

[53]  M. Reitzner Random points on the boundary of smooth convex bodies , 2002 .

[54]  Imre Bárány,et al.  Sylvester's question : The probability that n points are in convex position , 1999 .

[55]  I. Bárány Random polytopes in smooth convex bodies , 1992 .

[56]  Carsten Schütt,et al.  Random Polytopes and Affine Surface Area , 1993 .

[57]  Pavel Valtr The probability thatn random points in a triangle are in convex position , 1996, Comb..

[58]  Rolf Schneider,et al.  Extremal problems for geometric probabilities involving convex bodies , 1995, Advances in Applied Probability.

[59]  T. K. Carne,et al.  Shape and Shape Theory , 1999 .

[60]  Louis J. Billera,et al.  Face Numbers of Polytopes and Complexes , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[61]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[62]  Rolf Schneider Approximation of convex bodies by random polytopes , 1987 .

[63]  Grigoris Paouris,et al.  Quermassintegrals of a random polytope in a convex body , 2003 .

[64]  Bruno Massé On the variance of the number of extreme points of a random convex hull , 1999 .

[65]  W. Nagel,et al.  Crack STIT tessellations: characterization of stationary random tessellations stable with respect to iteration , 2005, Advances in Applied Probability.

[66]  Dietrich Stoyan,et al.  Integralgeometrische Grundlagen der Stochastischen Geometrie , 1990 .

[67]  R. Ambartzumian Stochastic and integral geometry , 1987 .

[68]  Fernando Affentranger,et al.  On the convex hull of uniform random points in a simpled-polytope , 1991, Discret. Comput. Geom..

[69]  J. K. Böröczky,et al.  Random projections of regular polytopes , 1999 .

[70]  David Aldous,et al.  The number of extreme points in the convex hull of a random sample , 1991 .

[71]  Stefan Glasauer,et al.  Asymptotic approximation of smooth convex bodies by polytopes , 1996 .

[72]  I. Bárány,et al.  Random convex hulls: floating bodies and expectations , 1993 .

[73]  Herbert Solomon,et al.  Geometric Probability , 1978, CBMS-NSF regional conference series in applied mathematics.

[74]  P. Moran A note on recent research in geometrical probability , 1966, Journal of Applied Probability.

[75]  Christian Buchta,et al.  The convex hull of random points in a tetrahedron: Solution of Blaschke's problem and more general results , 2001 .

[76]  B. Efron The convex hull of a random set of points , 1965 .

[77]  Daniel Hug,et al.  Asymptotic mean values of Gaussian polytopes , 2003 .

[78]  K. Böröczky,et al.  Approximation of smooth convex bodies by random circumscribed polytopes , 2004 .

[79]  Luc On the oscillation of the expected number of extreme points of a random set , 1990 .

[80]  C. Buchta,et al.  Random polytopes in a ball , 1984 .

[81]  D. V. Little A third note on recent research in geometrical probability , 1974, Advances in Applied Probability.

[82]  D. Stoyan,et al.  Stochastic Geometry and Its Applications , 1989 .

[83]  P. Gruber,et al.  Approximation of convex bodies by polytopes , 1982 .

[84]  Imre Bárány,et al.  On the expected number of k-sets , 1994, Discret. Comput. Geom..

[85]  J. Mecke An extremal property of random flats , 1988 .

[86]  Yuliy M. Baryshnikov,et al.  Regular simplices and Gaussian samples , 1994, Discret. Comput. Geom..

[87]  R. E. Miles ISOTROPIC RANDOM SIMPLICES , 1971 .

[88]  Adrian Baddeley,et al.  Stochastic Geometry: An Introduction and Reading-List , 1982 .

[89]  N. H. Bingham,et al.  On the Hausdorff distance between a convex set and an interior random convex hull , 1998, Advances in Applied Probability.

[90]  David Mannion,et al.  The Volume of a Tetrahedron whose Vertices are Chosen at Random in the Interior of a Parent Tetrahedron , 1994, Advances in Applied Probability.

[91]  L. Dümbgen,et al.  RATES OF CONVERGENCE FOR RANDOM APPROXIMATIONS OF CONVEX SETS , 1996 .

[92]  Christian Buchta,et al.  Equiaffine inner parallel curves of a plane convex body and the convex hulls of randomly chosen points , 1997 .

[93]  J. Møller Random tessellations in ℝ d , 1989, Advances in Applied Probability.

[94]  Rex A. Dwyer Convex hulls of samples from spherically symmetric distributions , 1991, Discret. Appl. Math..

[95]  Peter Gruber Expectation of random polytopes , 1996 .

[96]  Christian Buchta,et al.  An Identity Relating Moments of Functionals of Convex Hulls , 2005, Discret. Comput. Geom..

[97]  G. Matheron Random Sets and Integral Geometry , 1976 .

[98]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[99]  Matthias Reitzner,et al.  The combinatorial structure of random polytopes , 2005 .

[100]  A. M. Mathai An Introduction to Geometrical Probability: Distributional Aspects with Applications , 1999 .

[101]  P. Valtr,et al.  Probability thatn random points are in convex position , 1995, Discret. Comput. Geom..

[102]  Christian Buchta The Exact Distribution of the Number of Vertices of a Random Convex Chain , 2006 .

[103]  Christian Buchta On the number of vertices of random polyhedra with a given number of facets , 1987 .

[104]  Rolf Schneider A Duality for Poisson Flats , 1999, Advances in Applied Probability.

[105]  C. Buchta,et al.  Zufallspolygone in konvexen Vielecken. , 1984 .

[106]  Christian Buchta,et al.  Random polytopes in a convex polytope, independence of shape, and concentration of vertices , 1993 .

[107]  H. Carnal Die konvexe Hülle von n rotationssymmetrisch verteilten Punkten , 1970 .

[108]  Christian Buchta,et al.  Distribution-independent properties of the convex hull of random points , 1990 .

[109]  D. Kendall A Survey of the Statistical Theory of Shape , 1989 .

[110]  Rolf Schneider,et al.  Random projections of regular simplices , 1992, Discret. Comput. Geom..

[111]  Piet Groeneboom,et al.  Limit theorems for functionals of convex hulls , 1994 .

[112]  H. Ruben,et al.  A canonical decomposition of the probability measure of sets of isotropic random points in Rn , 1980 .

[113]  Tailen Hsing On the Asymptotic Distribution of the Area Outside a Random Convex Hull in a Disk , 1994 .

[114]  Matthias Reitzner,et al.  Stochastical approximation of smooth convex bodies , 2004 .

[115]  T. Schreiber Limit Theorems for Certain Functionals of Unions of Random Closed Sets , 2003 .

[116]  Imre Bárány,et al.  CONVEX-BODIES, ECONOMIC CAP COVERINGS, RANDOM POLYTOPES , 1988 .

[117]  J. Seaman Introduction to the theory of coverage processes , 1990 .

[118]  C. Buchta,et al.  Zufällige Polyeder - Eine Obersicht , 1985 .

[119]  Irene Hueter,et al.  The convex hull of a normal sample , 1994, Advances in Applied Probability.

[120]  R. E. Miles On the homogeneous planar Poisson point process , 1970 .