On the Foundations of Computational Mathematics

Publisher Summary This chapter discusses the interaction of computational numerical with pure mathematics.. As far as computer scientists are concerned, their genuine “interface of interaction” with numerical thinking is in two distinct areas: complexity theory and high-performance computing. While complexity theory has always been a glamourous activity in theoretical computer science, it has only recently emerged as a focus of concerted activity in numerical circles, occasionally leading to a measure of acrimony. It is to be hoped that, eventually, computer scientists will find complexity issues involving real-number computations to be challenging, worthwhile, and central to the understanding of theoretical computation. Likewise, the ongoing development of parallel computer architectures and the computational grid is likely to lead to considerably better numerical/computational interaction at the more practical, engineering-oriented end.

[1]  G. A. Watson,et al.  Choice of norms for data fitting and function approximation , 1998, Acta Numerica.

[2]  W. Dahmen Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.

[3]  Arthur G. Werschulz,et al.  Computational complexity of differential and integral equations - an information-based approach , 1991, Oxford mathematical monographs.

[4]  I. J. Schoenberg Remarks to Maurice Frechet's Article ``Sur La Definition Axiomatique D'Une Classe D'Espace Distances Vectoriellement Applicable Sur L'Espace De Hilbert , 1935 .

[5]  J. Traub,et al.  Perspectives on information-based complexity , 1992, math/9201269.

[6]  Sigurdur Helgason,et al.  Topics in Harmonic Analysis on Homogeneous Spaces , 1981 .

[7]  V. Milman,et al.  Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .

[8]  H. Keng,et al.  Applications of number theory to numerical analysis , 1981 .

[9]  Kenneth G. Wilson Grand challenges to computational science , 1989, Future Gener. Comput. Syst..

[10]  M. Zwaan An introduction to hilbert space , 1990 .

[11]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[12]  B. Buchberger,et al.  Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems , 1970 .

[13]  Vladimir N. Temlyakov,et al.  Nonlinear Methods of Approximation , 2003, Found. Comput. Math..

[14]  I. J. Schoenberg,et al.  Fourier integrals and metric geometry , 1941 .

[15]  R. Hiptmair Finite elements in computational electromagnetism , 2002, Acta Numerica.

[16]  I. J. Schoenberg,et al.  On Pólya frequency functions IV: The fundamental spline functions and their limits , 1966 .

[17]  Christian Brouder,et al.  Runge–Kutta methods and renormalization , 2000 .

[18]  Steve Smale,et al.  Complexity theory and numerical analysis , 1997, Acta Numerica.

[19]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[20]  I. J. Schoenberg On Certain Metric Spaces Arising From Euclidean Spaces by a Change of Metric and Their Imbedding in Hilbert Space , 1937 .

[21]  C. Micchelli Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .

[22]  Ralph Erskine,et al.  Alan Turing: the Enigma - Book Reviem , 1984, Cryptologia.

[23]  V. V. Buldygin,et al.  Brunn-Minkowski inequality , 2000 .

[24]  Evelyne Hubert,et al.  Factorization-free Decomposition Algorithms in Differential Algebra , 2000, J. Symb. Comput..

[25]  E. Tonti Sulla struttura formale delle teorie fisiche , 1976 .

[26]  B. C. or A.D. Ovid,et al.  The Erotic Poems , 1983 .

[27]  H. Keller Lectures on Numerical Methods in Bifurcation Problems , 1988 .

[28]  C. Budd,et al.  Geometric integration and its applications , 2003 .

[29]  C. Berg,et al.  Harmonic Analysis on Semigroups , 1984 .

[30]  A. Iserles,et al.  Lie-group methods , 2000, Acta Numerica.

[31]  Celso Grebogi,et al.  Do numerical orbits of chaotic dynamical processes represent true orbits? , 1987, J. Complex..

[32]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[33]  Felipe Cucker,et al.  Linear Programming and Condition Numbers under the Real Number Computation Model , 2003 .

[34]  Arieh Iserles,et al.  Geometric integration: numerical solution of differential equations on manifolds , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[35]  Doron Zeilberger,et al.  A fast algorithm for proving terminating hypergeometric identities , 1990, Discret. Math..

[36]  D. Lieberman,et al.  Fourier analysis , 2004, Journal of cataract and refractive surgery.

[37]  G. Stewart The Efficient Generation of Random Orthogonal Matrices with an Application to Condition Estimators , 1980 .

[38]  Eugene L. Allgower,et al.  Numerical continuation methods - an introduction , 1990, Springer series in computational mathematics.

[39]  B. Baxter,et al.  Positive definite functions on Hilbert space , 2004 .

[40]  R. DeVore,et al.  Nonlinear approximation , 1998, Acta Numerica.

[41]  C. Micchelli Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .

[42]  Martin D. Buhmann,et al.  Radial Basis Functions , 2021, Encyclopedia of Mathematical Geosciences.

[43]  Tien-Yien Li Numerical Solution of Polynomial Systems by Homotopy Continuation Methods , 2003 .

[44]  Stephen Smale,et al.  Some Remarks on the Foundations of Numerical Analysis , 1990, SIAM Rev..

[45]  A. Terras Fourier Analysis on Finite Groups and Applications: Index , 1999 .

[46]  I. Daubechies,et al.  Tree Approximation and Optimal Encoding , 2001 .

[47]  Alain Connes,et al.  Hopf Algebras, Renormalization and Noncommutative Geometry , 1998 .

[48]  I. J. Schoenberg Metric spaces and completely monotone functions , 1938 .

[49]  Godfrey H. Hardy,et al.  A mathematician's apology , 1941 .

[50]  Hartmut Prautzsch,et al.  Box Splines , 2002, Handbook of Computer Aided Geometric Design.

[51]  J. Marsden,et al.  Discrete mechanics and variational integrators , 2001, Acta Numerica.

[52]  S. Winograd On the multiplicative complexity of the Discrete Fourier Transform , 1979 .

[53]  David Williams Weighing the Odds: Events and Probabilities , 2001 .

[54]  G. Sapiro Introduction to Partial Differential Equations and Variational Formulations in Image Processing , 2003 .

[55]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[56]  C. Micchelli Mathematical aspects of geometric modeling , 1987 .

[57]  R. L. Hardy Multiquadric equations of topography and other irregular surfaces , 1971 .

[58]  Jean Duchon,et al.  Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces , 1976 .

[59]  J. H. Wilkinson Error analysis of floating-point computation , 1960 .

[60]  M. Yamaguti,et al.  Chaos in Finite Difference Schemes , 2003 .

[61]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[62]  Donal O'Shea,et al.  Ideals, varieties, and algorithms - an introduction to computational algebraic geometry and commutative algebra (2. ed.) , 1997, Undergraduate texts in mathematics.

[63]  G. Quispel,et al.  Foundations of Computational Mathematics: Six lectures on the geometric integration of ODEs , 2001 .

[64]  John C. Butcher,et al.  An algebraic theory of integration methods , 1972 .

[65]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[66]  R. N. Desmarais,et al.  Interpolation using surface splines. , 1972 .

[67]  I. J. Schoenberg,et al.  On Pólya frequency functions IV: The fundamental spline functions and their limits , 1966 .

[68]  Beresford N. Parlett Some basic information on information-based complexity theory , 1992 .

[69]  Vadim Shapiro,et al.  A multivector data structure for differential forms and equations , 2000 .

[70]  Frank Natterer,et al.  Numerical methods in tomography , 1999, Acta Numerica.

[71]  A. R. Humphries,et al.  Dynamical Systems And Numerical Analysis , 1996 .

[72]  H. Trotter Eigenvalue distributions of large Hermitian matrices; Wigner's semi-circle law and a theorem of Kac, Murdock, and Szegö , 1984 .

[73]  B. Buchberger,et al.  Gröbner bases and applications , 1998 .

[74]  David Hestenes,et al.  Geometric Algebra for Mathematics and Physics , 2004 .