Nanopower, Sub-1 V, CMOS Voltage References With Digitally-Trimmable Temperature Coefficients
暂无分享,去创建一个
[1] I. Filanovsky,et al. Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits , 2001 .
[2] G. Iannaccone,et al. A Sub- ${\boldsymbol kT}/\boldsymbol q$ Voltage Reference Operating at 150 mV , 2015, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.
[3] T. R. Viswanathan,et al. A CMOS bandgap reference without resistors , 2000, 2000 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.00CH37056).
[4] Yintang Yang,et al. A 0.45-V, 14.6-nW CMOS Subthreshold Voltage Reference With No Resistors and No BJTs , 2015, IEEE Transactions on Circuits and Systems II: Express Briefs.
[5] G. Iannaccone,et al. A Sub-1 V, 10 ppm/°C, Nanopower Voltage Reference Generator , 2006, 2006 Proceedings of the 32nd European Solid-State Circuits Conference.
[6] Nobutaka Kuroki,et al. 1.2-V Supply, 100-nW, 1.09-V Bandgap and 0.7-V Supply, 52.5-nW, 0.55-V Subbandgap Reference Circuits for Nanowatt CMOS LSIs , 2013, IEEE Journal of Solid-State Circuits.
[7] K. Sakui,et al. A CMOS bandgap reference circuit with sub-1-V operation , 1999 .
[8] Tor Sverre Lande,et al. A Sub-$\mu{\rm W}$ Bandgap Reference Circuit With an Inherent Curvature-Compensation Property , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.
[9] Carlos Galup-Montoro,et al. A 2-nW 1.1-V self-biased current reference in CMOS technology , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.
[10] Felice Crupi,et al. A Sub-kT/q Voltage Reference Operating at 150 mV , 2015, IEEE Trans. Very Large Scale Integr. Syst..
[11] T. Manku,et al. Temperature-independent output voltage generated by threshold voltage of an NMOS transistor , 1995 .
[12] Carlos Christoffersen,et al. Sub-1 V, 4 na CMOS voltage references with digitally-trimmable temperature coefficient , 2014, 2014 IEEE 12th International New Circuits and Systems Conference (NEWCAS).
[13] David Blaauw,et al. A Portable 2-Transistor Picowatt Temperature-Compensated Voltage Reference Operating at 0.5 V , 2012, IEEE Journal of Solid-State Circuits.
[14] Y. Amemiya,et al. A 300 nW, 15 ppm/$^{\circ}$C, 20 ppm/V CMOS Voltage Reference Circuit Consisting of Subthreshold MOSFETs , 2009, IEEE Journal of Solid-State Circuits.
[15] Fernando Silveira,et al. Bias circuit design for low-voltage cascode transistors , 2006, SBCCI '06.
[16] Marcelo Lubaszewski,et al. A 2-transistor sub-1V low power temperature compensated CMOS voltage reference , 2014, 2014 27th Symposium on Integrated Circuits and Systems Design (SBCCI).
[17] H. Oguey,et al. CMOS Current Reference without Resistance , 1996, ESSCIRC '96: Proceedings of the 22nd European Solid-State Circuits Conference.
[18] Fengqi Yu,et al. A Novel 1.2–V 4.5-ppm/°C Curvature-Compensated CMOS Bandgap Reference , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.
[19] Yintang Yang,et al. A 19-nW 0.7-V CMOS Voltage Reference With No Amplifiers and No Clock Circuits , 2014, IEEE Transactions on Circuits and Systems II: Express Briefs.
[20] David D. Wentzloff,et al. 5.4 A 32nW bandgap reference voltage operational from 0.5V supply for ultra-low power systems , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.
[21] Carlos Galup-Montoro,et al. An MOS transistor model for analog circuit design , 1998, IEEE J. Solid State Circuits.
[22] M. C. Schneider,et al. PTAT voltage generator based on an MOS voltage divider , 2007 .
[23] Xi Qu,et al. A Resistorless CMOS Voltage Reference Based on Mutual Compensation of $V_{T}$ and $V_{\rm TH}$ , 2013, IEEE Transactions on Circuits and Systems II: Express Briefs.
[24] Sergio Bampi,et al. 0.7 V supply, 8 nW, 8 ppm/°C resistorless sub-bandgap voltage reference , 2014, 2014 IEEE 57th International Midwest Symposium on Circuits and Systems (MWSCAS).
[25] Laleh Najafizadeh,et al. A simple voltage reference using transistor with ZTC point and PTAT current source , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).
[26] Giuseppe Iannaccone,et al. A 2.6 nW, 0.45 V Temperature-Compensated Subthreshold CMOS Voltage Reference , 2011, IEEE Journal of Solid-State Circuits.
[27] Hanspeter Schmid,et al. Measuring a Small Number of Samples, and the 3v Fallacy: Shedding Light on Confidence and Error Intervals , 2014, IEEE Solid-State Circuits Magazine.
[28] Julius Georgiou,et al. A Novel Wide-Temperature-Range, 3.9 ppm/$^{\circ}$C CMOS Bandgap Reference Circuit , 2012, IEEE Journal of Solid-State Circuits.
[29] F. Silveira,et al. A MOSFET-only voltage source with arbitrary sign adjustable temperature coefficient , 2011, 2011 IEEE 9th International New Circuits and systems conference.
[30] Jin Hu,et al. A 0.45 V, Nano-Watt 0.033% Line Sensitivity MOSFET-Only Sub-Threshold Voltage Reference With no Amplifiers , 2016, IEEE Transactions on Circuits and Systems I: Regular Papers.
[31] Marcio C. Schneider,et al. Mosfet Modeling for Circuit Analysis and Design , 2007 .
[32] Giuseppe de Vita,et al. A Sub-1-V, 10 ppm/ $^{\circ}$C, Nanopower Voltage Reference Generator , 2007, IEEE Journal of Solid-State Circuits.