Nanopower, Sub-1 V, CMOS Voltage References With Digitally-Trimmable Temperature Coefficients

Two variants of a MOS-only voltage reference are proposed. They are based on MOSFETs operating at a constant inversion level which cancels out nonlinearities of their temperature dependence arising from that of mobility. The theory behind the circuits is thoroughly discussed, a design method is described and experimental results are presented. The two architectures propose different trimming methods for the temperature slope of the references. A test chip was designed and fabricated on a standard <inline-formula> <tex-math notation="LaTeX">$0.35~\mu \text {m}$ </tex-math></inline-formula> CMOS technology including both architectures. They generate reference voltages around 710 mV, operating from 0.9 V to 3 V supply voltage while consuming 3.0 nA and 3.3 nA. The measured temperature coefficients ranged from 8 to 40 ppm/°C in the - 20 °C to 80 °C range.

[1]  I. Filanovsky,et al.  Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits , 2001 .

[2]  G. Iannaccone,et al.  A Sub- ${\boldsymbol kT}/\boldsymbol q$ Voltage Reference Operating at 150 mV , 2015, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[3]  T. R. Viswanathan,et al.  A CMOS bandgap reference without resistors , 2000, 2000 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.00CH37056).

[4]  Yintang Yang,et al.  A 0.45-V, 14.6-nW CMOS Subthreshold Voltage Reference With No Resistors and No BJTs , 2015, IEEE Transactions on Circuits and Systems II: Express Briefs.

[5]  G. Iannaccone,et al.  A Sub-1 V, 10 ppm/°C, Nanopower Voltage Reference Generator , 2006, 2006 Proceedings of the 32nd European Solid-State Circuits Conference.

[6]  Nobutaka Kuroki,et al.  1.2-V Supply, 100-nW, 1.09-V Bandgap and 0.7-V Supply, 52.5-nW, 0.55-V Subbandgap Reference Circuits for Nanowatt CMOS LSIs , 2013, IEEE Journal of Solid-State Circuits.

[7]  K. Sakui,et al.  A CMOS bandgap reference circuit with sub-1-V operation , 1999 .

[8]  Tor Sverre Lande,et al.  A Sub-$\mu{\rm W}$ Bandgap Reference Circuit With an Inherent Curvature-Compensation Property , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[9]  Carlos Galup-Montoro,et al.  A 2-nW 1.1-V self-biased current reference in CMOS technology , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.

[10]  Felice Crupi,et al.  A Sub-kT/q Voltage Reference Operating at 150 mV , 2015, IEEE Trans. Very Large Scale Integr. Syst..

[11]  T. Manku,et al.  Temperature-independent output voltage generated by threshold voltage of an NMOS transistor , 1995 .

[12]  Carlos Christoffersen,et al.  Sub-1 V, 4 na CMOS voltage references with digitally-trimmable temperature coefficient , 2014, 2014 IEEE 12th International New Circuits and Systems Conference (NEWCAS).

[13]  David Blaauw,et al.  A Portable 2-Transistor Picowatt Temperature-Compensated Voltage Reference Operating at 0.5 V , 2012, IEEE Journal of Solid-State Circuits.

[14]  Y. Amemiya,et al.  A 300 nW, 15 ppm/$^{\circ}$C, 20 ppm/V CMOS Voltage Reference Circuit Consisting of Subthreshold MOSFETs , 2009, IEEE Journal of Solid-State Circuits.

[15]  Fernando Silveira,et al.  Bias circuit design for low-voltage cascode transistors , 2006, SBCCI '06.

[16]  Marcelo Lubaszewski,et al.  A 2-transistor sub-1V low power temperature compensated CMOS voltage reference , 2014, 2014 27th Symposium on Integrated Circuits and Systems Design (SBCCI).

[17]  H. Oguey,et al.  CMOS Current Reference without Resistance , 1996, ESSCIRC '96: Proceedings of the 22nd European Solid-State Circuits Conference.

[18]  Fengqi Yu,et al.  A Novel 1.2–V 4.5-ppm/°C Curvature-Compensated CMOS Bandgap Reference , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[19]  Yintang Yang,et al.  A 19-nW 0.7-V CMOS Voltage Reference With No Amplifiers and No Clock Circuits , 2014, IEEE Transactions on Circuits and Systems II: Express Briefs.

[20]  David D. Wentzloff,et al.  5.4 A 32nW bandgap reference voltage operational from 0.5V supply for ultra-low power systems , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[21]  Carlos Galup-Montoro,et al.  An MOS transistor model for analog circuit design , 1998, IEEE J. Solid State Circuits.

[22]  M. C. Schneider,et al.  PTAT voltage generator based on an MOS voltage divider , 2007 .

[23]  Xi Qu,et al.  A Resistorless CMOS Voltage Reference Based on Mutual Compensation of $V_{T}$ and $V_{\rm TH}$ , 2013, IEEE Transactions on Circuits and Systems II: Express Briefs.

[24]  Sergio Bampi,et al.  0.7 V supply, 8 nW, 8 ppm/°C resistorless sub-bandgap voltage reference , 2014, 2014 IEEE 57th International Midwest Symposium on Circuits and Systems (MWSCAS).

[25]  Laleh Najafizadeh,et al.  A simple voltage reference using transistor with ZTC point and PTAT current source , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[26]  Giuseppe Iannaccone,et al.  A 2.6 nW, 0.45 V Temperature-Compensated Subthreshold CMOS Voltage Reference , 2011, IEEE Journal of Solid-State Circuits.

[27]  Hanspeter Schmid,et al.  Measuring a Small Number of Samples, and the 3v Fallacy: Shedding Light on Confidence and Error Intervals , 2014, IEEE Solid-State Circuits Magazine.

[28]  Julius Georgiou,et al.  A Novel Wide-Temperature-Range, 3.9 ppm/$^{\circ}$C CMOS Bandgap Reference Circuit , 2012, IEEE Journal of Solid-State Circuits.

[29]  F. Silveira,et al.  A MOSFET-only voltage source with arbitrary sign adjustable temperature coefficient , 2011, 2011 IEEE 9th International New Circuits and systems conference.

[30]  Jin Hu,et al.  A 0.45 V, Nano-Watt 0.033% Line Sensitivity MOSFET-Only Sub-Threshold Voltage Reference With no Amplifiers , 2016, IEEE Transactions on Circuits and Systems I: Regular Papers.

[31]  Marcio C. Schneider,et al.  Mosfet Modeling for Circuit Analysis and Design , 2007 .

[32]  Giuseppe de Vita,et al.  A Sub-1-V, 10 ppm/ $^{\circ}$C, Nanopower Voltage Reference Generator , 2007, IEEE Journal of Solid-State Circuits.