Comparison of a PreQ1 Riboswitch Aptamer in Metabolite-bound and Free States with Implications for Gene Regulation*

Riboswitches are RNA regulatory elements that govern gene expression by recognition of small molecule ligands via a high affinity aptamer domain. Molecular recognition can lead to active or attenuated gene expression states by controlling accessibility to mRNA signals necessary for transcription or translation. Key areas of inquiry focus on how an aptamer attains specificity for its effector, the extent to which the aptamer folds prior to encountering its ligand, and how ligand binding alters expression signal accessibility. Here we present crystal structures of the preQ1 riboswitch from Thermoanaerobacter tengcongensis in the preQ1-bound and free states. Although the mode of preQ1 recognition is similar to that observed for preQ0, surface plasmon resonance revealed an apparent KD of 2.1 ± 0.3 nm for preQ1 but a value of 35.1 ± 6.1 nm for preQ0. This difference can be accounted for by interactions between the preQ1 methylamine and base G5 of the aptamer. To explore conformational states in the absence of metabolite, the free-state aptamer structure was determined. A14 from the ceiling of the ligand pocket shifts into the preQ1-binding site, resulting in “closed” access to the metabolite while simultaneously increasing exposure of the ribosome-binding site. Solution scattering data suggest that the free-state aptamer is compact, but the “closed” free-state crystal structure is inadequate to describe the solution scattering data. These observations are distinct from transcriptional preQ1 riboswitches of the same class that exhibit strictly ligand-dependent folding. Implications for gene regulation are discussed.

[1]  A. Serganov,et al.  Structural insights into ligand recognition by a sensing domain of the cooperative glycine riboswitch. , 2010, Molecular cell.

[2]  Andrea L Edwards,et al.  Structural basis for recognition of S-adenosylhomocysteine by riboswitches. , 2010, RNA.

[3]  D. Svergun,et al.  Structural characterization of proteins and complexes using small-angle X-ray solution scattering. , 2010, Journal of structural biology.

[4]  R. Montange,et al.  Free state conformational sampling of the SAM-I riboswitch aptamer domain. , 2010, Structure.

[5]  R. Micura,et al.  Folding of a transcriptionally acting PreQ1 riboswitch , 2010, Proceedings of the National Academy of Sciences.

[6]  N. Kulshina,et al.  Riboswitch function: Flipping the switch or tuning the dimmer? , 2010, RNA biology.

[7]  Raghuvir N. Sengupta,et al.  A rearrangement of the guanosine-binding site establishes an extended network of functional interactions in the Tetrahymena group I ribozyme active site. , 2010, Biochemistry.

[8]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[9]  D. Herschlag,et al.  The ligand-free state of the TPP riboswitch: a partially folded RNA structure. , 2010, Journal of molecular biology.

[10]  A. Serganov Determination of riboswitch structures: Light at the end of the tunnel? , 2010, RNA biology.

[11]  Patricia Bouchard,et al.  Riboswitch structure: an internal residue mimicking the purine ligand , 2009, Nucleic acids research.

[12]  A. Ferré-D’Amaré,et al.  Ribozymes and riboswitches: modulation of RNA function by small molecules , 2009, Biochemistry.

[13]  Kathryn D. Smith,et al.  Structural basis of ligand binding by a c-di-GMP riboswitch , 2009, Nature Structural &Molecular Biology.

[14]  Paul D. Adams,et al.  Averaged kick maps: less noise, more signal…and probably less bias , 2009, Acta crystallographica. Section D, Biological crystallography.

[15]  Á. Somogyi,et al.  The deazapurine biosynthetic pathway revealed: in vitro enzymatic synthesis of PreQ(0) from guanosine 5'-triphosphate in four steps. , 2009, Biochemistry.

[16]  R. Micura,et al.  Evidence for Pseudoknot Formation of Class I preQ1 Riboswitch Aptamers , 2009, Chembiochem : a European journal of chemical biology.

[17]  Vahe Bandarian,et al.  The Structural Basis for Recognition of the PreQ0 Metabolite by an Unusually Small Riboswitch Aptamer Domain*♦ , 2009, Journal of Biological Chemistry.

[18]  J. Rabinowitz,et al.  Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli , 2009, Nature chemical biology.

[19]  Ronald R. Breaker,et al.  Roseoflavin is a natural antibacterial compound that binds to FMN riboswitches and regulates gene expression , 2009, RNA biology.

[20]  Mijeong Kang,et al.  Structural Insights into riboswitch control of the biosynthesis of queuosine, a modified nucleotide found in the anticodon of tRNA. , 2009, Molecular cell.

[21]  A. Ferré-D’Amaré,et al.  Cocrystal structure of a class I preQ1 riboswitch reveals a pseudoknot recognizing an essential hypermodified nucleobase , 2009, Nature Structural &Molecular Biology.

[22]  Timothy McPhillips,et al.  New paradigm for macromolecular crystallography experiments at SSRL: automated crystal screening and remote data collection , 2008, Acta crystallographica. Section D, Biological crystallography.

[23]  A. Serganov,et al.  Structural insights into amino acid binding and gene control by a lysine riboswitch , 2008, Nature.

[24]  V. Bandarian,et al.  Deciphering deazapurine biosynthesis: pathway for pyrrolopyrimidine nucleosides toyocamycin and sangivamycin. , 2008, Chemistry & biology.

[25]  R. Batey,et al.  Crystal Structure of the Lysine Riboswitch Regulatory mRNA Element* , 2008, Journal of Biological Chemistry.

[26]  R. Batey,et al.  Ligand-dependent folding of the three-way junction in the purine riboswitch. , 2008, RNA.

[27]  Adam Roth,et al.  Confirmation of a second natural preQ1 aptamer class in Streptococcaceae bacteria. , 2008, RNA.

[28]  M. Tate,et al.  High hydrostatic pressure small-angle X-ray scattering cell for protein solution studies featuring diamond windows and disposable sample cells , 2008 .

[29]  S. Wijmenga,et al.  Ligand-induced folding of the guanine-sensing riboswitch is controlled by a combined predetermined induced fit mechanism. , 2007, RNA.

[30]  Jeffrey E. Barrick,et al.  The distributions, mechanisms, and structures of metabolite-binding riboswitches , 2007, Genome Biology.

[31]  S. V. Van Lanen,et al.  Mechanistic studies of Bacillus subtilis QueF, the nitrile oxidoreductase involved in queuosine biosynthesis. , 2007, Biochemistry.

[32]  Renate Rieder,et al.  Ligand-induced folding of the thiM TPP riboswitch investigated by a structure-based fluorescence spectroscopic approach , 2007, Nucleic acids research.

[33]  H. Čelešnik,et al.  Initiation of RNA decay in Escherichia coli by 5' pyrophosphate removal. , 2007, Molecular cell.

[34]  S. Olgen,et al.  Site-specific modification of Shigella flexneri virF mRNA by tRNA-guanine transglycosylase in vitro , 2007, Nucleic acids research.

[35]  R. Micura,et al.  Ligand‐Induced Folding of the Adenosine Deaminase A‐Riboswitch and Implications on Riboswitch Translational Control , 2007, Chembiochem : a European journal of chemical biology.

[36]  D. Quaranta,et al.  The Copper-Inducible cin Operon Encodes an Unusual Methionine-Rich Azurin-Like Protein and a Pre-Q0 Reductase in Pseudomonas putida KT2440 , 2007, Journal of bacteriology.

[37]  Adam Roth,et al.  A riboswitch selective for the queuosine precursor preQ1 contains an unusually small aptamer domain , 2007, Nature Structural &Molecular Biology.

[38]  Sebastian Doniach,et al.  Structural transitions and thermodynamics of a glycine-dependent riboswitch from Vibrio cholerae. , 2007, Journal of molecular biology.

[39]  R. Breaker,et al.  Riboswitches as antibacterial drug targets , 2006, Nature Biotechnology.

[40]  A. Serganov,et al.  Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch , 2006, Nature.

[41]  N. Ban,et al.  Structure of the Eukaryotic Thiamine Pyrophosphate Riboswitch with Its Regulatory Ligand , 2006, Science.

[42]  W. Winkler,et al.  Genetic control by cis-acting regulatory RNAs in Bacillus subtilis: general principles and prospects for discovery. , 2006, Cold Spring Harbor symposia on quantitative biology.

[43]  R. Breaker,et al.  Regulation of bacterial gene expression by riboswitches. , 2005, Annual review of microbiology.

[44]  V. de Crécy-Lagard,et al.  Aminoacylation of the anticodon stem by a tRNA-synthetase paralog: relic of an ancient code? , 2004, Trends in biochemical sciences.

[45]  Michael J Rust,et al.  Single-molecule enzymology of RNA: essential functional groups impact catalysis from a distance. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Randy J Read,et al.  Recent developments in the PHENIX software for automated crystallographic structure determination. , 2004, Journal of synchrotron radiation.

[47]  Dmitri I. Svergun,et al.  PRIMUS: a Windows PC-based system for small-angle scattering data analysis , 2003 .

[48]  D. Iwata‐Reuyl,et al.  Biosynthesis of the 7-deazaguanosine hypermodified nucleosides of transfer RNA. , 2003, Bioorganic chemistry.

[49]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[50]  S Doniach,et al.  Changes in biomolecular conformation seen by small angle X-ray scattering. , 2001, Chemical reviews.

[51]  J. García de la Torre,et al.  Calculation of hydrodynamic properties of globular proteins from their atomic-level structure. , 2000, Biophysical journal.

[52]  J. Wedekind,et al.  Purification, crystallization, and X-ray diffraction analysis of small ribozymes. , 2000, Methods in enzymology.

[53]  D. Myszka,et al.  Improving biosensor analysis , 1999, Journal of molecular recognition : JMR.

[54]  D. Northrop On the Meaning of Km and V/K in Enzyme Kinetics , 1998 .

[55]  T. Marks,et al.  Effects of a diet deficient in tyrosine and queuine on germfree mice. , 1997, Biochemical and biophysical research communications.

[56]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[57]  D. Svergun,et al.  CRYSOL : a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates , 1995 .

[58]  G. Hoops,et al.  tRNA-guanine transglycosylase from Escherichia coli: structure-activity studies investigating the role of the aminomethyl substituent of the heterocyclic substrate PreQ1. , 1995, Biochemistry.

[59]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[60]  R. Wu,et al.  Relationship of the queuine content of transfer ribonucleic acids to histopathological grading and survival in human lung cancer. , 1992, Cancer research.

[61]  Dmitri I. Svergun,et al.  Determination of the regularization parameter in indirect-transform methods using perceptual criteria , 1992 .

[62]  D. I. Svergun,et al.  Structure Analysis by Small-Angle X-Ray and Neutron Scattering , 1987 .

[63]  A. Fersht,et al.  Hydrogen bonding and biological specificity analysed by protein engineering , 1985, Nature.

[64]  W. Kabsch A solution for the best rotation to relate two sets of vectors , 1976 .