Robust validity index for a modified subtractive clustering algorithm

A novel robust validity index is proposed for subtractive clustering (SC) algorithm. Although the SC algorithm is a simple and fast data clustering method with robust properties against outliers and noise; it has two limitations. First, the cluster number generated by the SC algorithm is influenced by a given threshold. Second, the cluster centers obtained by SC are based on data that have the highest potential values but may not be the actual cluster centers. The validity index is a function as a measure of the fitness of a partition for a given data set. To solve the first problem, this study proposes a novel robust validity index that evaluates the fitness of a partition generated by SC algorithm in terms of three properties: compactness, separation and partition index. To solve the second problem, a modified algorithm based on distance relations between data and cluster centers is designed to ascertain the actual centers generated by the SC algorithm. Experiments confirm that the preferences of the proposed index outperform all others.

[1]  Cheng-Chien Kuo,et al.  A Novel Validity Index for the Subtractive Clustering Algorithm , 2011, Int. J. Pattern Recognit. Artif. Intell..

[2]  Hui Xiong,et al.  A Generalization of Distance Functions for Fuzzy $c$ -Means Clustering With Centroids of Arithmetic Means , 2012, IEEE Transactions on Fuzzy Systems.

[3]  Ke-Lin Du,et al.  Clustering: A neural network approach , 2010, Neural Networks.

[4]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .

[5]  Horng-Lin Shieh A new framework of fuzzy clustering algorithm , 2011, 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011).

[6]  Po-Lun Chang,et al.  An efficient method for estimating cluster radius of subtractive clustering based on genetic algorithm , 2013, 2013 IEEE International Symposium on Consumer Electronics (ISCE).

[7]  Rajesh N. Davé,et al.  Validating fuzzy partitions obtained through c-shells clustering , 1996, Pattern Recognit. Lett..

[8]  Ujjwal Maulik,et al.  Performance Evaluation of Some Clustering Algorithms and Validity Indices , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Rajesh N. Davé,et al.  Robust clustering methods: a unified view , 1997, IEEE Trans. Fuzzy Syst..

[10]  Y. Fukuyama,et al.  A new method of choosing the number of clusters for the fuzzy c-mean method , 1989 .

[11]  Elpiniki I. Papageorgiou,et al.  Fuzzy cognitive map ensemble learning paradigm to solve classification problems: Application to autism identification , 2012, Appl. Soft Comput..

[12]  J. Bezdek Cluster Validity with Fuzzy Sets , 1973 .

[13]  J. Bezdek Numerical taxonomy with fuzzy sets , 1974 .

[14]  Nor Ashidi Mat Isa,et al.  Novel initialization scheme for Fuzzy C-Means algorithm on color image segmentation , 2013, Appl. Soft Comput..

[15]  James C. Bezdek,et al.  A Convergence Theorem for the Fuzzy ISODATA Clustering Algorithms , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Sotirios Chatzis,et al.  Factor Analysis Latent Subspace Modeling and Robust Fuzzy Clustering Using $t$-Distributions , 2009, IEEE Transactions on Fuzzy Systems.

[17]  Ilias Petrounias,et al.  A hybrid intelligent approach for the prediction of electricity consumption , 2012 .

[18]  Qiang Chen,et al.  Fuzzy c-means clustering with weighted image patch for image segmentation , 2012, Appl. Soft Comput..

[19]  Mahmoud Naghibzadeh,et al.  Fuzzy c-means improvement using relaxed constraints support vector machines , 2013, Appl. Soft Comput..

[20]  Po-Lun Chang,et al.  Robust neural-fuzzy method for function approximation , 2008, 2008 International Conference on Machine Learning and Cybernetics.

[21]  Gökhan Bilgin,et al.  Segmentation of Hyperspectral Images via Subtractive Clustering and Cluster Validation Using One-Class Support Vector Machines , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Dewang Chen,et al.  Soft computing methods applied to train station parking in urban rail transit , 2012, Appl. Soft Comput..

[23]  Miin-Shen Yang,et al.  A cluster validity index for fuzzy clustering , 2005, Pattern Recognit. Lett..

[24]  James C. Bezdek,et al.  Generalized fuzzy c-means clustering strategies using Lp norm distances , 2000, IEEE Trans. Fuzzy Syst..

[25]  Stephen L. Chiu,et al.  Fuzzy Model Identification Based on Cluster Estimation , 1994, J. Intell. Fuzzy Syst..

[26]  Kaushal K. Shukla,et al.  Crop parameters estimation by fuzzy inference system using X-band scatterometer data , 2013 .

[27]  James C. Bezdek,et al.  On cluster validity for the fuzzy c-means model , 1995, IEEE Trans. Fuzzy Syst..

[28]  Jian-Ping Mei,et al.  A Fuzzy Approach for Multitype Relational Data Clustering , 2012, IEEE Transactions on Fuzzy Systems.

[29]  Weina Wang,et al.  On fuzzy cluster validity indices , 2007, Fuzzy Sets Syst..

[30]  Hoel Le Capitaine,et al.  A Cluster-Validity Index Combining an Overlap Measure and a Separation Measure Based on Fuzzy-Aggregation Operators , 2011, IEEE Transactions on Fuzzy Systems.

[31]  K. alik Cluster validity index for estimation of fuzzy clusters of different sizes and densities , 2010 .

[32]  R. Yager,et al.  Approximate Clustering Via the Mountain Method , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[33]  Yunis Torun,et al.  Designing simulated annealing and subtractive clustering based fuzzy classifier , 2011, Appl. Soft Comput..

[34]  Chou-Yuan Lee,et al.  A novel algorithm applied to classify unbalanced data , 2012, Appl. Soft Comput..

[35]  Gerardo Beni,et al.  A Validity Measure for Fuzzy Clustering , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  James C. Bezdek,et al.  Some new indexes of cluster validity , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[37]  Mu-Yen Chen,et al.  A hybrid ANFIS model for business failure prediction utilizing particle swarm optimization and subtractive clustering , 2013, Inf. Sci..