Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin

[1]  G. Mul,et al.  Manipulating the Hydrocarbon Selectivity of Copper Nanoparticles in CO2 Electroreduction by Process Conditions , 2015 .

[2]  T. Meyer,et al.  Single catalyst electrocatalytic reduction of CO2 in water to H2+CO syngas mixtures with water oxidation to O2 , 2014 .

[3]  M. Koper,et al.  Electrochemical and spectroelectrochemical characterization of an iridium-based molecular catalyst for water splitting: turnover frequencies, stability, and electrolyte effects. , 2014, Journal of the American Chemical Society.

[4]  G. Mul,et al.  Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons. , 2014, Physical chemistry chemical physics : PCCP.

[5]  Matthew W. Kanan,et al.  Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper , 2014, Nature.

[6]  Jiujun Zhang,et al.  A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. , 2014, Chemical Society reviews.

[7]  Marc T. M. Koper,et al.  Theory of multiple proton–electron transfer reactions and its implications for electrocatalysis , 2013 .

[8]  Kristian Sommer Thygesen,et al.  Electrochemical CO2 and CO reduction on metal-functionalized porphyrin-like graphene , 2013 .

[9]  N. Danilovic,et al.  Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. , 2013, Nature chemistry.

[10]  Jean-Michel Savéant,et al.  Catalysis of the electrochemical reduction of carbon dioxide. , 2013, Chemical Society reviews.

[11]  M. Koper Analysis of electrocatalytic reaction schemes: distinction between rate-determining and potential-determining steps , 2013, Journal of Solid State Electrochemistry.

[12]  M. Koper,et al.  Theory of the transition from sequential to concerted electrochemical proton-electron transfer. , 2013, Physical chemistry chemical physics : PCCP.

[13]  J. Savéant,et al.  A Local Proton Source Enhances CO2 Electroreduction to CO by a Molecular Fe Catalyst , 2012, Science.

[14]  G. Maurer,et al.  An Experimental Investigation of the Solubility of CO2 in (N,N-Dimethylmethanamide + Water) , 2012 .

[15]  Colin Finn,et al.  Molecular approaches to the electrochemical reduction of carbon dioxide. , 2012, Chemical communications.

[16]  Marc T. M. Koper,et al.  Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis , 2011 .

[17]  M. Koper,et al.  Electrochemical reduction of carbon dioxide on copper electrodes , 2017 .

[18]  N. Sai,et al.  Cobalt-porphyrin catalyzed electrochemical reduction of carbon dioxide in water. 2. Mechanism from first principles. , 2010, The journal of physical chemistry. A.

[19]  I. Nielsen,et al.  Cobalt-porphyrin catalyzed electrochemical reduction of carbon dioxide in water. 1. A density functional study of intermediates. , 2010, The journal of physical chemistry. A.

[20]  M. Koper,et al.  Combining voltammetry with HPLC: application to electro-oxidation of glycerol. , 2010, Analytical chemistry.

[21]  J. Savéant Molecular catalysis of electrochemical reactions. Mechanistic aspects. , 2008, Chemical reviews.

[22]  M. Koper,et al.  Redox transitions of chromium, manganese, iron, cobalt and nickel protoporphyrins in aqueous solution. , 2008, Physical chemistry chemical physics : PCCP.

[23]  M. Koper,et al.  On-line mass spectrometry system for measurements at single-crystal electrodes in hanging meniscus configuration , 2006 .

[24]  M. Merkx,et al.  Electrochemical reduction of NO by hemin adsorbed at pyrolitic graphite. , 2005, Journal of the American Chemical Society.

[25]  H. Jónsson,et al.  Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode , 2004 .

[26]  D. Tryk,et al.  Electrochemical Reduction of CO 2 with Transition Metal Phthalocyanine and Porphyrin Complexes Supported on Activated Carbon Fibers , 2002 .

[27]  N. Sonoyama,et al.  Electrochemical reduction of CO2 at metal-porphyrin supported gas diffusion electrodes under high pressure CO2 , 1999 .

[28]  Hideaki K. Tanaka,et al.  Aminopyridyl cation radical method for bridging between metal complex and glassy carbon: cobalt(II) tetraphenylporphyrin bonded on glassy carbon for enhancement of CO2 electroreduction , 1997 .

[29]  Yuyuan Tian,et al.  In situ STM and AFM study of protoporphyrin and iron(III) and zinc(II) protoporphyrins adsorbed on graphite in aqueous solutions , 1995 .

[30]  Kaname Ito,et al.  Kinetics of Electrochemical Reduction of Carbon Dioxide on a Gold Electrode in Phosphate Buffer Solutions , 1995 .

[31]  M. Kaneko,et al.  Selective electroacatalysis for CO2 reduction in the aqueous phase using cobalt phthalocyanine/poly-4-vinylpyridine modified electrodes , 1995 .

[32]  Acknowledgements , 1992, Experimental Gerontology.

[33]  T. Spiro,et al.  Cobalt porphyrin electrode films as hydrogen catalysts , 1985 .

[34]  S. Kapusta,et al.  Carbon Dioxide Reduction at a Metal Phthalocyanine Catalyzed Carbon Electrode , 1984 .

[35]  R. Eisenberg,et al.  Electrocatalytic reduction of carbon dioxide by using macrocycles of nickel and cobalt , 1980 .

[36]  Wolfgang Ziegler,et al.  Modern Aspects Of Electrochemistry , 2016 .

[37]  Y. Hori,et al.  Electrochemical CO 2 Reduction on Metal Electrodes , 2008 .

[38]  A. Aramata,et al.  Cobalt(II)-tetraphenylporphyrin-pyridine complex fixed on a glassy carbon electrode and its prominent catalytic activity for reduction of carbon dioxide , 1991 .

[39]  N. Furuya,et al.  Electroreduction of carbon dioxide on gas-diffusion electrodes modified by metal phthalocyanines , 1989 .