On the first hitting time density for a reducible diffusion process

In this paper, we study the classical problem of the first hitting time density to a moving boundary for a diffusion process, which satisfies the Cherkasov condition, and hence, can be reduced to a standard Wiener process. We give two complementary (forward and backward) formulations of this problem and provide semi-analytical solutions for both. By using the method of heat potentials, we show how to reduce these problems to linear Volterra integral equations of the second kind. For small values of t, we solve these equations analytically by using Abel equation approximation; for larger t we solve them numerically. We illustrate our method with representative examples, including Ornstein–Uhlenbeck processes with both constant and time-dependent coefficients. We provide a comparison with other known methods for finding the hitting density of interest, and argue that our method has considerable advantages and provides additional valuable insights. We also show applications of the problem and our method in various areas of financial mathematics.

[1]  Marc Yor,et al.  A clarification note about hitting times densities for Ornstein-Uhlenbeck processes , 2003, Finance Stochastics.

[2]  Alan G. White,et al.  Valuing Credit Default Swaps II , 2000 .

[3]  M. Avellaneda,et al.  Statistical arbitrage in the US equities market , 2010 .

[4]  A. G. Greenhill,et al.  Handbook of Mathematical Functions with Formulas, Graphs, , 1971 .

[5]  J. Horowitz Measure-valued random processes , 1985 .

[6]  Chuang Yi,et al.  On the first passage time distribution of an Ornstein–Uhlenbeck process , 2010 .

[7]  Pricing and Hedging CoCos , 2015 .

[8]  Peter Linz,et al.  Analytical and numerical methods for Volterra equations , 1985, SIAM studies in applied and numerical mathematics.

[9]  Khosrow Maleknejad,et al.  A new approach to the numerical solution of Volterra integral equations by using Bernstein’s approximation , 2011 .

[10]  Shunsuke Sato,et al.  First-passage-time density and moments of the Ornstein-Uhlenbeck process , 1988 .

[11]  A. Lipton Mathematical methods for foreign exchange , 2001 .

[12]  Artur Sepp,et al.  Filling the Gaps , 1962, Mental health.

[13]  A. Borodin,et al.  Handbook of Brownian Motion - Facts and Formulae , 1996 .

[14]  G. Peters,et al.  Multiple barrier-crossings of an Ornstein-Uhlenbeck diffusion in consecutive periods , 2019, Stochastic Analysis and Applications.

[15]  Olivier Scaillet,et al.  Path dependent options on yields in the affine term structure model , 1998, Finance Stochastics.

[16]  Luigi M. Ricciardi On the transformation of diffusion processes into the Wiener process , 1976 .

[17]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[18]  D. Duffy Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach , 2006 .

[19]  Olivier Scaillet,et al.  A correction note on the first passage time of an Ornstein-Uhlenbeck process to a boundary , 2000, Finance Stochastics.

[20]  Alexander Lipton,et al.  Pricing credit default swaps with bilateral value adjustments , 2012, 1207.6049.

[21]  Ward Whitt,et al.  An Introduction to Numerical Transform Inversion and Its Application to Probability Models , 2000 .

[22]  J. L. Pedersen,et al.  Representations of the First Hitting Time Density of an Ornstein-Uhlenbeck Process , 2005 .

[23]  A. G. Nobile,et al.  A computational approach to first-passage-time problems for Gauss–Markov processes , 2001 .

[24]  M. J. Kearney,et al.  Long- and short-time asymptotics of the first-passage time of the Ornstein–Uhlenbeck and other mean-reverting processes , 2018, Journal of Physics A: Mathematical and Theoretical.

[25]  Alexander Novikov,et al.  On Stopping Times for a Wiener Process , 1971 .

[26]  E. M. Landis,et al.  Second Order Equations of Elliptic and Parabolic Type , 1997 .

[27]  P. Collin‐Dufresne,et al.  Do Credit Spreads Reflect Stationary Leverage Ratios , 2001 .

[28]  M. Kolk,et al.  Numerical solution of Volterra integral equations with weakly singular kernels which may have a boundary singularity , 2009 .

[29]  F. Black,et al.  VALUING CORPORATE SECURITIES: SOME EFFECTS OF BOND INDENTURE PROVISIONS , 1976 .

[30]  V. Linetsky Computing Hitting Time Densities for CIR and OU Diffusions: Applications to Mean-Reverting Models , 2004 .

[31]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[32]  Delia Coculescu,et al.  Valuation of default-sensitive claims under imperfect information , 2008, Finance Stochastics.

[33]  Alexander Lipton,et al.  On the First Hitting Time Density of an Ornstein-Uhlenbeck Process , 2018, 1810.02390.

[34]  A. Novikov,et al.  Approximations of boundary crossing probabilities for a Brownian motion , 1999 .

[35]  I. D. Cherkasov On the Transformation of the Diffusion Process to a Wiener Process , 1957 .

[36]  Alexander Lipton,et al.  Credit Value Adjustment in the Extended Structural Default Model , 2011 .

[37]  Liqun Wang,et al.  Boundary crossing probability for Brownian motion , 2001, Journal of Applied Probability.

[38]  L. Breiman First exit times from a square root boundary , 1967 .

[39]  Arvet Pedas,et al.  Numerical solution of Volterra integral equations with singularities , 2013 .

[40]  C. Reisinger,et al.  Semi-analytical solution of a McKean–Vlasov equation with feedback through hitting a boundary , 2018, European Journal of Applied Mathematics.

[41]  Khosrow Maleknejad,et al.  Numerical solution of nonlinear Volterra integral equations of the second kind by using Chebyshev polynomials , 2007, Appl. Math. Comput..

[42]  G. Bluman,et al.  ON THE TRANSFORMATION OF DIFFUSION PROCESSES INTO THE WIENER PROCESS , 1980 .

[43]  M. Smoluchowski Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen , 1906 .

[44]  L. Shepp A First Passage Problem for the Wiener Process , 1967 .

[45]  Alexander Lipton,et al.  Mathematical Methods for Foreign Exchange: A Financial Engineer's Approach , 2001 .

[46]  R J Martin,et al.  Infinite product expansion of the Fokker–Planck equation with steady-state solution , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[47]  H. Daniels,et al.  Approximating the first crossing-time density for a curved boundary , 1996 .