A vector holographic optical trap

The invention of optical tweezers almost forty years ago has triggered applications spanning multiple disciplines and has also found its way into commercial products. A major breakthrough came with the invention of holographic optical tweezers (HOTs), allowing simultaneous manipulation of many particles, traditionally done with arrays of scalar beams. Here we demonstrate a vector HOT with arrays of digitally controlled Higher-Order Poincaré Sphere (HOPS) beams. We employ a simple set-up using a spatial light modulator and show that each beam in the array can be manipulated independently and set to an arbitrary HOPS state, including replicating traditional scalar beam HOTs. We demonstrate trapping and tweezing with customized arrays of HOPS beams comprising scalar orbital angular momentum and cylindrical vector beams, including radially and azimuthally polarized beams simultaneously in the same trap. Our approach is general enough to be easily extended to arbitrary vector beams, could be implemented with fast refresh rates and will be of interest to the structured light and optical manipulation communities alike.

[1]  Miles J. Padgett,et al.  Lights, action: Optical tweezers , 2002 .

[2]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[3]  Michael P. MacDonald,et al.  Optical Tweezers: the next generation , 2002 .

[4]  Mourad Zghal,et al.  Optical communication beyond orbital angular momentum , 2016, Scientific Reports.

[5]  A. Ashkin,et al.  Optical trapping and manipulation of single cells using infrared laser beams , 1987, Nature.

[6]  C. cohen-tannoudji Manipulating atoms with photons , 1998 .

[7]  Electromagnetic Force and Momentum , 2016, 1612.06478.

[8]  Jörg Baumgartl,et al.  Optically mediated particle clearing using Airy wavepackets , 2008 .

[9]  Jinhua Zhou,et al.  Optical trapping of core-shell magnetic microparticles by cylindrical vector beams , 2014 .

[10]  A. Forbes,et al.  Simultaneous generation of multiple vector beams on a single SLM. , 2017, Optics express.

[11]  Halina Rubinsztein-Dunlop,et al.  Forces in optical tweezers with radially and azimuthally polarized trapping beams. , 2008, Optics letters.

[12]  G. Collins The next generation. , 2006, Scientific American.

[13]  H J Tiziani,et al.  Optical particle trapping with computer-generated holograms written on a liquid-crystal display. , 1999, Optics letters.

[14]  Andrew Forbes,et al.  Creation and detection of optical modes with spatial light modulators , 2016 .

[15]  Miles J. Padgett,et al.  The angular momentum of light: optical spanners and the rotational frequency shift , 1999 .

[16]  Halina Rubinsztein-Dunlop,et al.  Optical trapping of otoliths drives vestibular behaviours in larval zebrafish , 2017, Nature Communications.

[17]  M. Padgett,et al.  Holographic optical trapping Raman micro-spectroscopy of interacting live cells , 2018, bioRxiv.

[18]  Cornelia Denz,et al.  Tailored intensity landscapes by tight focusing of singular vector beams. , 2017, Optics express.

[19]  Jennifer E. Curtis,et al.  Dynamic holographic optical tweezers , 2002 .

[20]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[21]  Andrew Forbes,et al.  Controlled generation of higher-order Poincaré sphere beams from a laser , 2015, Nature Photonics.

[22]  Johannes Courtial,et al.  3D manipulation of particles into crystal structures using holographic optical tweezers. , 2004, Optics express.

[23]  Y. Kozawa,et al.  Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams. , 2010, Optics express.

[24]  Q. Zhan Cylindrical vector beams: from mathematical concepts to applications , 2009 .

[25]  D. Grier A revolution in optical manipulation , 2003, Nature.

[26]  C. cohen-tannoudji,et al.  Nobel Lecture: Manipulating atoms with photons , 1998 .

[27]  Jonathan Leach,et al.  Independent polarisation control of multiple optical traps. , 2008, Optics express.

[28]  A. Forbes,et al.  Characterizing quantum channels with non-separable states of classical light , 2017, Nature Physics.

[29]  K. Toussaint,et al.  Optical trapping with π-phase cylindrical vector beams , 2010 .

[30]  Isaac Nape,et al.  Creation and Detection of Vector Vortex Modes for Classical and Quantum Communication , 2017, Journal of Lightwave Technology.

[31]  K. Neuman,et al.  Optical trapping. , 2004, The Review of scientific instruments.

[32]  Kuo-Kang Liu,et al.  Optical tweezers for single cells , 2008, Journal of The Royal Society Interface.

[33]  W. Phillips Nobel Lecture: Laser cooling and trapping of neutral atoms , 1998 .

[34]  Miles J. Padgett,et al.  Tweezers with a twist , 2011 .

[35]  Yasuhiro Takaya,et al.  Measurement of axial and transverse trapping stiffness of optical tweezers in air using a radially polarized beam. , 2009, Applied optics.

[36]  Halina Rubinsztein-Dunlop,et al.  Roadmap on structured light , 2016 .

[37]  J. H. Poynting XV. On the transfer of energy in the electromagnetic field , 1884, Philosophical Transactions of the Royal Society of London.

[38]  J. Glückstad,et al.  Optical twists in phase and amplitude. , 2011, Optics express.

[39]  Tomáš Čižmár,et al.  High-speed spatial control of the intensity, phase and polarisation of vector beams using a digital micro-mirror device. , 2016, Optics express.

[40]  Gerd Leuchs,et al.  Classical and quantum properties of cylindrically polarized states of light. , 2010, Optics express.

[41]  K. Neuman,et al.  Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy , 2008, Nature Methods.

[42]  H. Metcalf,et al.  Laser Cooling and Trapping of Neutral Atoms , 2004 .

[43]  A. Forbes,et al.  Fiber propagation of vector modes. , 2015, Optics express.

[44]  K. B. Davis,et al.  Bose-Einstein Condensation in a Gas of Sodium Atoms , 1995, EQEC'96. 1996 European Quantum Electronic Conference.

[45]  S. Chu The manipulation of neutral particles , 1998 .

[46]  Avid,et al.  High-speed spatial control of the intensity , phase and polarisation of vector beams using a digital micro-mirror device , 2016 .

[47]  A. Ashkin,et al.  Internal cell manipulation using infrared laser traps. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[48]  W Sibbett,et al.  Controlled Rotation of Optically Trapped Microscopic Particles , 2001, Science.

[49]  A. Forbes,et al.  Multiplexing 200 spatial modes with a single hologram , 2017 .

[50]  A. Gennerich Optical Tweezers , 2017, Methods in Molecular Biology.

[51]  M. Padgett,et al.  Holographic optical trapping Raman micro-spectroscopy for non-invasive measurement and manipulation of live cells. , 2018, Optics express.

[52]  Kishan Dholakia,et al.  Optical Trapping Takes Shape: The Use of Structured Light Fields , 2008 .

[53]  A. Ferrari,et al.  Optical trapping of nanotubes with cylindrical vector beams. , 2012, Optics letters.

[54]  Giovanni Volpe,et al.  Optical trapping and manipulation of nanostructures. , 2013, Nature nanotechnology.

[55]  E. Wolf,et al.  Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[56]  Q. Zhan,et al.  Focus shaping using cylindrical vector beams. , 2002, Optics express.

[57]  S. Quake,et al.  Relaxation of a single DNA molecule observed by optical microscopy. , 1994, Science.

[58]  E. Riis,et al.  Laser cooling and trapping of neutral atoms , 1997 .

[59]  C. Denz,et al.  Entanglement beating in free space through spin–orbit coupling , 2018, Light: Science & Applications.

[60]  Miles J. Padgett,et al.  Optical Tweezers And Spanners , 1997 .

[61]  Andrew Forbes,et al.  How to Shape Light with Spatial Light Modulators , 2017 .

[62]  He,et al.  Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. , 1995, Physical review letters.

[63]  H. Rubinsztein-Dunlop,et al.  Optical alignment and spinning of laser-trapped microscopic particles , 1998, Nature.

[64]  R. Saija,et al.  Trapping volume control in optical tweezers using cylindrical vector beams. , 2013, Optics letters.

[65]  Miles Padgett,et al.  Holographic optical tweezers and their relevance to lab on chip devices. , 2011, Lab on a chip.

[66]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[67]  John Henry Poynting,et al.  On the transfer of energy in the electromagnetic field , 1883, Proceedings of the Royal Society of London.

[68]  S. Chu Nobel Lecture: The manipulation of neutral particles , 1998 .

[69]  D. Nolan,et al.  Higher-order Poincaré sphere, stokes parameters, and the angular momentum of light. , 2011, Physical review letters.

[70]  Johannes Courtial,et al.  Assembly of 3-dimensional structures using programmable holographic optical tweezers. , 2004, Optics express.

[71]  G. Spalding,et al.  Computer-generated holographic optical tweezer arrays , 2000, cond-mat/0008414.

[72]  Carlos Bustamante,et al.  Recent advances in optical tweezers. , 2008, Annual review of biochemistry.

[73]  R. A. Beth Mechanical Detection and Measurement of the Angular Momentum of Light , 1936 .

[74]  Alexander Jesacher,et al.  Tailoring of arbitrary optical vector beams , 2007 .

[75]  Síle Nic Chormaic,et al.  Optical trapping and manipulation of micrometer and submicrometer particles , 2015 .

[76]  Shu-Zhen Wang,et al.  Generation of arbitrary vector beams with cascaded liquid crystal spatial light modulators. , 2014, Optics express.