A Direct and Accurate Adaptive Semi-Lagrangian Scheme for the Vlasov-Poisson Equation
暂无分享,去创建一个
[1] Wolfgang Dahmen. Adaptive approximation by multivariate smooth splines , 1982 .
[2] R. DeVore,et al. Nonlinear approximation , 1998, Acta Numerica.
[3] Jeffery Cooper,et al. Boundary value problems for the Vlasov-Maxwell equation in one dimension , 1980 .
[4] Jean,et al. Développement et analyse de méthodes adaptatives pour les équations de transport , 2005 .
[5] Francis Filbet,et al. Vlasov simulations of beams with a moving grid , 2004, Comput. Phys. Commun..
[6] Eric Sonnendrücker,et al. Vlasov simulations on an adaptive phase-space grid , 2004, Comput. Phys. Commun..
[7] Martin Campos Pinto,et al. Convergence of an adaptive semi-Lagrangian scheme for the Vlasov-Poisson system , 2007, Numerische Mathematik.
[8] P. Raviart. An analysis of particle methods , 1985 .
[9] Albert Cohen,et al. Fully adaptive multiresolution finite volume schemes for conservation laws , 2003, Math. Comput..
[10] E. Sonnendrücker,et al. The Semi-Lagrangian Method for the Numerical Resolution of the Vlasov Equation , 1999 .
[11] Francis Filbet,et al. An adaptive numerical method for the Vlasov equation based on a multiresolution analysis , 2007, 0704.1595.
[12] Harry Yserentant,et al. Hierarchical bases , 1992 .
[13] R. Glassey,et al. The Cauchy Problem in Kinetic Theory , 1987 .
[14] Wolfgang Dahmen,et al. Multiresolution schemes for conservation laws , 2001 .
[15] Olivier Roussel,et al. A conservative fully adaptive multiresolution algorithm for parabolic PDEs , 2003 .
[16] Martin Campos Pinto,et al. Convergence of an Adaptive Scheme for the one dimensional Vlasov-Poisson system , 2005 .
[17] G. Knorr,et al. The integration of the vlasov equation in configuration space , 1976 .
[18] E. Sonnendrücker,et al. Numerical Methods for Hyperbolic and Kinetic Problems , 2005 .
[19] Nicolas Besse. Convergence of a Semi-Lagrangian Scheme for the One-Dimensional Vlasov-Poisson System , 2004, SIAM J. Numer. Anal..