The chaperone-histone partnership: for the greater good of histone traffic and chromatin plasticity.

Histones are highly positively charged proteins that wrap our genome. Their surface properties also make them prone to nonspecific interactions and aggregation. A class of proteins known as histone chaperones is dedicated to safeguard histones by aiding their proper incorporation into nucleosomes. Histone chaperones facilitate ordered nucleosome assembly and disassembly reactions through the formation of semi-stable histone-chaperone intermediates without requiring ATP, but merely providing a complementary protein surface for histones to dynamically interact with. Recurrent 'chaperoning' mechanisms involve the masking of the histone's positive charge and the direct blocking of crucial histone surface sites, including those required for H3-H4 tetramerization or the binding of nucleosomal DNA. This shielding prevents histones from engaging in premature or unwanted interactions with nucleic acids and other cellular components. In this review, we analyze recent structural studies on chaperone-histone interactions and discuss the implications of this vital partnership for nucleosome assembly and disassembly pathways.

[1]  V. Rybin,et al.  The FACT Spt16 “peptidase” domain is a histone H3–H4 binding module , 2008, Proceedings of the National Academy of Sciences.

[2]  Vijender Singh,et al.  University of Dundee The histone chaperones Nap 1 and Vps 75 bind histones H 3 and H 4 in a tetrameric conformation , 2012 .

[3]  G. Almouzni,et al.  Histone H3.1 and H3.3 Complexes Mediate Nucleosome Assembly Pathways Dependent or Independent of DNA Synthesis , 2004, Cell.

[4]  K. Luger,et al.  Histone chaperones in nucleosome eviction and histone exchange. , 2008, Current opinion in structural biology.

[5]  Michael A. Freitas,et al.  Histone H3-K56 acetylation is catalyzed by histone chaperone-dependent complexes. , 2007, Molecular cell.

[6]  G. Mizuguchi,et al.  Nonhistone Scm3 and Histones CenH3-H4 Assemble the Core of Centromere-Specific Nucleosomes , 2007, Cell.

[7]  Jiri Bartek,et al.  Human Asf1 regulates the flow of S phase histones during replicational stress. , 2005, Molecular cell.

[8]  D. Stillman,et al.  yFACT induces global accessibility of nucleosomal DNA without H2A-H2B displacement. , 2009, Molecular cell.

[9]  J. Ausió,et al.  Nucleoplasmin Binds Histone H2A-H2B Dimers through Its Distal Face* , 2010, The Journal of Biological Chemistry.

[10]  K. Luger,et al.  The structure of nucleosome assembly protein 1 , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[11]  M. Churchill,et al.  The histone shuffle: histone chaperones in an energetic dance. , 2010, Trends in biochemical sciences.

[12]  Christopher E. Berndsen,et al.  Molecular functions of the histone acetyltransferase chaperone complex Rtt109-Vps75 , 2008, Nature Structural &Molecular Biology.

[13]  F. Winston,et al.  The structure of an Iws 1 / Spt 6 complex reveals an interaction domain conserved in TFIIS , Elongin A and Med 26 Marie - , 2010 .

[14]  M. Churchill,et al.  ASF1 binds to a heterodimer of histones H3 and H4: a two-step mechanism for the assembly of the H3-H4 heterotetramer on DNA. , 2005, Biochemistry.

[15]  X. Yao,et al.  Structure of a CENP-A-histone H4 heterodimer in complex with chaperone HJURP. , 2011, Genes & development.

[16]  Jason Feser,et al.  Chromatin structure as a mediator of aging , 2011, FEBS letters.

[17]  Yawen Bai,et al.  NMR structure of chaperone Chz1 complexed with histones H2A.Z-H2B , 2008, Nature Structural &Molecular Biology.

[18]  K. Luger,et al.  Histone chaperone specificity in Rtt109 activation , 2008, Nature Structural &Molecular Biology.

[19]  K. Rippe,et al.  On the Mechanism of Nucleosome Assembly by Histone Chaperone NAP1* , 2006, Journal of Biological Chemistry.

[20]  M. Churchill,et al.  Structural Basis for the Histone Chaperone Activity of Asf1 , 2006, Cell.

[21]  Karolin Luger,et al.  Structural determinants for generating centromeric chromatin , 2004, Nature.

[22]  J. Zang,et al.  Structural Analysis of Rtt106p Reveals a DNA Binding Role Required for Heterochromatin Silencing* , 2009, The Journal of Biological Chemistry.

[23]  Craig D. Kaplan,et al.  Transcription Elongation Factors Repress Transcription Initiation from Cryptic Sites , 2003, Science.

[24]  K. Luger,et al.  Nucleosome Assembly Protein 1 Exchanges Histone H2A-H2B Dimers and Assists Nucleosome Sliding* , 2005, Journal of Biological Chemistry.

[25]  Daria A. Gaykalova,et al.  Mechanism of chromatin remodeling and recovery during passage of RNA polymerase II , 2009, Nature Structural &Molecular Biology.

[26]  T. Schmidt,et al.  Single-Pair FRET Microscopy Reveals Mononucleosome Dynamics , 2007, Journal of Fluorescence.

[27]  B. E. Black,et al.  The Structure of (CENP-A/H4)2 Reveals Physical Features that Mark Centromeres , 2010, Nature.

[28]  R. Kingston,et al.  Structural basis of histone H4 recognition by p55. , 2008, Genes & development.

[29]  K. Luger,et al.  H2A.Z alters the nucleosome surface to promote HP1alpha-mediated chromatin fiber folding. , 2004, Molecular cell.

[30]  Vijender Singh,et al.  The Histone Chaperones Nap1 and Vps75 Bind Histones H3 and H4 in a Tetrameric Conformation , 2011, Molecular cell.

[31]  K. Luger,et al.  A Thermodynamic Model for Nap1-Histone Interactions* , 2008, Journal of Biological Chemistry.

[32]  John R. Yates,et al.  The human CENP-A centromeric nucleosome-associated complex , 2006, Nature Cell Biology.

[33]  G. Orphanides,et al.  FACT Facilitates Transcription-Dependent Nucleosome Alteration , 2003, Science.

[34]  T. Formosa,et al.  The structure of the yFACT Pob3-M domain, its interaction with the DNA replication factor RPA, and a potential role in nucleosome deposition. , 2006, Molecular cell.

[35]  C. Akey,et al.  The crystal structure of nucleoplasmin-core: implications for histone binding and nucleosome assembly. , 2001, Molecular cell.

[36]  L. Pemberton,et al.  A role for nucleosome assembly protein 1 in the nuclear transport of histones H2A and H2B , 2002, The EMBO journal.

[37]  Karolin Luger,et al.  Nucleosome structure(s) and stability: variations on a theme. , 2011, Annual review of biophysics.

[38]  M. Churchill,et al.  The activity of the histone chaperone yeast Asf1 in the assembly and disassembly of histone H3/H4–DNA complexes , 2011, Nucleic acids research.

[39]  Recognition of the centromere-specific histone Cse4 by the chaperone Scm3 , 2011, Proceedings of the National Academy of Sciences.

[40]  J. Berger,et al.  Structure and Function of the Conserved Core of Histone Deposition Protein Asf1 , 2003, Current Biology.

[41]  T. Formosa,et al.  Supplemental Information Structure and Biological Importance of the Spn 1-Spt 6 Interaction , and Its Regulatory Role in Nucleosome Binding , 2010 .

[42]  S. White,et al.  The Chromatin-Remodeling Factor FACT Contributes to Centromeric Heterochromatin Independently of RNAi , 2007, Current Biology.

[43]  F. Winston,et al.  Evidence That Spt6p Controls Chromatin Structure by a Direct Interaction with Histones , 1996, Science.

[44]  Sean J. Johnson,et al.  Crystal structures of the S. cerevisiae Spt6 core and C-terminal tandem SH2 domain. , 2011, Journal of molecular biology.

[45]  F. Winston,et al.  Noncanonical Tandem SH2 Enables Interaction of Elongation Factor Spt6 with RNA Polymerase II* , 2010, The Journal of Biological Chemistry.

[46]  P. Cramer,et al.  A Tandem SH2 Domain in Transcription Elongation Factor Spt6 Binds the Phosphorylated RNA Polymerase II C-terminal Repeat Domain (CTD)* , 2010, The Journal of Biological Chemistry.

[47]  Karsten Rippe,et al.  NAP1 Modulates Binding of Linker Histone H1 to Chromatin and Induces an Extended Chromatin Fiber Conformation* , 2005, Journal of Biological Chemistry.

[48]  Zhiguo Zhang,et al.  Acetylation of Histone H3 Lysine 56 Regulates Replication-Coupled Nucleosome Assembly , 2008, Cell.

[49]  F. Winston,et al.  The structure of an Iws1/Spt6 complex reveals an interaction domain conserved in TFIIS, Elongin A and Med26 , 2010, The EMBO journal.

[50]  T. Richmond,et al.  Crystal structure of the nucleosome core particle at 2.8 Å resolution , 1997, Nature.

[51]  K. Luger,et al.  The histone chaperone Nap1 promotes nucleosome assembly by eliminating nonnucleosomal histone DNA interactions. , 2010, Molecular cell.

[52]  T. Senda,et al.  Histone chaperones: 30 years from isolation to elucidation of the mechanisms of nucleosome assembly and disassembly , 2008, Cellular and Molecular Life Sciences.

[53]  D. Stillman,et al.  Spt16–Pob3 and the HMG protein Nhp6 combine to form the nucleosome‐binding factor SPN , 2001, The EMBO journal.

[54]  X. Pei,et al.  Structural Basis for the Recognition of Histone H4 by the Histone-Chaperone RbAp46 , 2008, Structure.

[55]  Julia M. Schulze,et al.  Asf1-like structure of the conserved Yaf9 YEATS domain and role in H2A.Z deposition and acetylation , 2009, Proceedings of the National Academy of Sciences of the United States of America.

[56]  R. Marmorstein,et al.  Structure of Vps75 and implications for histone chaperone function , 2008, Proceedings of the National Academy of Sciences.

[57]  Hua Xiao,et al.  Structural basis for recognition of centromere histone variant CenH3 by the chaperone Scm3 , 2011, Nature.

[58]  M. Santisteban,et al.  Histone H2A.Z acid patch residues required for deposition and function , 2011, Molecular Genetics and Genomics.