The role of hole localization in sacrificial hydrogen production by semiconductor-metal heterostructured nanocrystals.

The effect of hole localization on photocatalytic activity of Pt-tipped semiconductor nanocrystals is investigated. By tuning the energy balance at the semiconductor-ligand interface, we demonstrate that hydrogen production on Pt sites is efficient only when electron-donating molecules are used for stabilizing semiconductor surfaces. These surfactants play an important role in enabling an efficient and stable reduction of water by heterostructured nanocrystals as they fill vacancies in the valence band of the semiconductor domain, preventing its degradation. In particular, we show that the energy of oxidizing holes can be efficiently transferred to a ligand moiety, leaving the semiconductor domain intact. This allows reusing the inorganic portion of the "degraded" nanocrystal-ligand system simply by recharging these nanoparticles with fresh ligands.

[1]  Kwang‐Je Kim,et al.  Photo-production of hydrogen over the CdS–TiO2 nano-composite particulate films treated with TiCl4 , 2004 .

[2]  M. Fontecave,et al.  Cobaloxime-based photocatalytic devices for hydrogen production. , 2008, Angewandte Chemie.

[3]  P. Kamat,et al.  Photocatalysis with CdSe nanoparticles in confined media: mapping charge transfer events in the subpicosecond to second timescales. , 2009, ACS nano.

[4]  N. Hewa-Kasakarage,et al.  Synthesis of ZnSe/CdS/ZnSe Nanobarbells Showing Photoinduced Charge Separation , 2009 .

[5]  A. Kudo,et al.  Photocatalytic Hydrogen Evolution on ZnS−CuInS2−AgInS2 Solid Solution Photocatalysts with Wide Visible Light Absorption Bands , 2006 .

[6]  M. Kang,et al.  Enhanced photodecomposition of 4-chlorophenol in aqueous solution by deposition of CdS on TiO2 , 1999 .

[7]  F. Castellano,et al.  Homogeneous photocatalytic hydrogen production using π-conjugated platinum(II) arylacetylide sensitizers. , 2011, Inorganic chemistry.

[8]  Akihiko Kudo,et al.  Development of photocatalyst materials for water splitting , 2006 .

[9]  Andrey L. Rogach,et al.  Colloidal CdS nanorods decorated with subnanometer sized Pt clusters for photocatalytic hydrogen generation , 2010 .

[10]  F. Hussein,et al.  Photo-oxidation of benzyl alcohol under natural weathering conditions , 2007 .

[11]  Uri Banin,et al.  Visible light-induced charge retention and photocatalysis with hybrid CdSe-Au nanodumbbells. , 2008, Nano letters.

[12]  Yunfeng Lu,et al.  Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity. , 2007, Journal of the American Chemical Society.

[13]  G. Scholes,et al.  Charge Separation and Recombination in CdTe/CdSe Core/Shell Nanocrystals as a Function of Shell Coverage: Probing the Onset of the Quasi Type-II Regime , 2010 .

[14]  S. Tretiak,et al.  Type-II core/shell CdS/ZnSe nanocrystals: synthesis, electronic structures, and spectroscopic properties. , 2007, Journal of the American Chemical Society.

[15]  Kazunari Domen,et al.  New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light , 2007 .

[16]  N. Ohashi,et al.  Synthesis of nanosized nitrogen-containing MOx–ZnO (M = W, V, Fe) composite powders by spray pyrolysis and their visible-light-driven photocatalysis in gas-phase acetaldehyde decomposition , 2004 .

[17]  H. Yamashita,et al.  Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts , 2002 .

[18]  Xiaoyin Zhou,et al.  Semiconductor nanocrystals with adjustable hole acceptors: tuning the fluorescence intensity by metal-ion binding. , 2010, Angewandte Chemie.

[19]  C. Pulgarin,et al.  Escherichia coli inactivation by N, S co-doped commercial TiO2 powders under UV and visible light , 2008 .

[20]  C. Larabell,et al.  Quantum dots as cellular probes. , 2005, Annual review of biomedical engineering.

[21]  N. Hewa-Kasakarage,et al.  Tuning the Morphology of Au/CdS Nanocomposites through Temperature-Controlled Reduction of Gold-Oleate Complexes , 2010 .

[22]  A. Bezryadin,et al.  The effect of dielectric friction on the rate of charge separation in type II ZnSe/CdS semiconductor nanorods , 2009 .

[23]  P. Wu,et al.  Enhanced Visible‐Light Photocatalytic Disinfection of Bacterial Spores by Palladium‐Modified Nitrogen‐Doped Titanium Oxide , 2008 .

[24]  P. El-Khoury,et al.  Ultrafast carrier dynamics in type II ZnSe/CdS/ZnSe nanobarbells. , 2010, ACS nano.

[25]  J. M. Coronado,et al.  Development of alternative photocatalysts to TiO2: Challenges and opportunities , 2009 .

[26]  A. Paul Alivisatos,et al.  Photocatalytic Hydrogen Production with Tunable Nanorod Heterostructures , 2010 .

[27]  T. Mallouk The Emerging Technology of Solar Fuels , 2010 .

[28]  V. Keller,et al.  Photocatalytic behavior of a new composite ternary system: WO3/SiC-TiO2. Effect of the coupling of semiconductors and oxides in photocatalytic oxidation of methylethylketone in the gas phase , 2003 .

[29]  C. Chang,et al.  Comparison of photocatalytic activities of various dye-modified TiO2 thin films under visible light , 2008 .

[30]  S. Bernhard,et al.  Homogeneous catalytic system for photoinduced hydrogen production utilizing iridium and rhodium complexes. , 2008, Inorganic chemistry.

[31]  Yi-Chun Jin,et al.  Highly Active TiO2-xNx Visible Photocatalyst Prepared by N-Doping in Et3N/EtOH Fluid under Supercritical Conditions , 2008 .

[32]  N. Hewa-Kasakarage,et al.  Suppression of the plasmon resonance in Au/CdS colloidal nanocomposites. , 2011, Nano letters.

[33]  C. M. Donegá,et al.  Synthesis and properties of colloidal heteronanocrystals , 2011 .

[34]  Uri Banin,et al.  Growth of Photocatalytic CdSe–Pt Nanorods and Nanonets , 2008 .

[35]  H. Yamashita,et al.  Application of ion beam techniques for preparation of metal ion-implanted TiO2 thin film photocatalyst available under visible light irradiation: metal ion-implantation and ionized cluster beam method. , 2001, Journal of synchrotron radiation.

[36]  M. Anpo,et al.  Photocatalytic decomposition of NO under visible light irradiation on the Cr‐ion‐implanted TiO2 thin film photocatalyst , 2000 .

[37]  A. Yoshida,et al.  Photocatalytic Hydrogen Evolution from Water on Nanocomposites Incorporating Cadmium Sulfide into the Interlayer , 2002 .

[38]  J. Bandara,et al.  Photocatalytic activity of dye-sensitized tin(IV) oxide nanocrystalline particles attached to zinc oxide particles: long distance electron transfer via ballistic transport of electrons across nanocrystallites , 2001 .

[39]  Monica Nadasan,et al.  Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. , 2007, Nano letters.

[40]  K. Yamauchi,et al.  Evidence for Pt(II)-based molecular catalysis in the thermal reduction of water into molecular hydrogen. , 2009, Journal of the American Chemical Society.

[41]  A. Kudo,et al.  Visible-light-induced H2 evolution from an aqueous solution containing sulfide and sulfite over a ZnS-CuInS2-AgInS2 solid-solution photocatalyst. , 2005, Angewandte Chemie.

[42]  U. Banin,et al.  Synthesis and photocatalytic properties of a family of CdS-PdX hybrid nanoparticles. , 2011, Angewandte Chemie.

[43]  Sander F. Wuister,et al.  Influence of thiol capping on the exciton luminescence and decay kinetics of CdTe and CdSe quantum dots , 2004 .

[44]  Tsuyoshi Takata,et al.  Self-Templated Synthesis of Nanoporous CdS Nanostructures for Highly Efficient Photocatalytic Hydrogen Production under Visible Light , 2008 .

[45]  Zhiliang Jin,et al.  Improved quantum yield for photocatalytic hydrogen generation under visible light irradiation over eosin sensitized TiO2 : Investigation of different noble metal loading , 2006 .

[46]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[47]  N. Hewa-Kasakarage,et al.  Synthesis And Characterization Of Type II ZnSe/ CdS Core/Shell Nanocrystals , 2008 .

[48]  Uri Banin,et al.  ZnSe quantum dots within CdS nanorods: a seeded-growth type-II system. , 2008, Small.

[49]  Frank E. Osterloh,et al.  Inorganic Materials as Catalysts for Photochemical Splitting of Water , 2008 .

[50]  Jean François Dr. Reber,et al.  Photochemical hydrogen production with platinized suspensions of cadmium sulfide and cadmium zinc sulfide modified by silver sulfide , 1986 .

[51]  K. Gurunathan,et al.  Photocatalytic hydrogen production by dye-sensitized Pt/SnO2 and Pt/SnO2/RuO2 in aqueous methyl viologen solution , 1997 .

[52]  P. El-Khoury,et al.  Radiative recombination of spatially extended excitons in (ZnSe/CdS)/CdS heterostructured nanorods. , 2009, Journal of the American Chemical Society.

[53]  A. Kudo,et al.  Heterogeneous photocatalyst materials for water splitting. , 2009, Chemical Society reviews.

[54]  M. Bawendi,et al.  Synthesis of CdSe/CdTe nanobarbells. , 2006, Journal of the American Chemical Society.

[55]  C. M. Donegá Formation of nanoscale spatially indirect excitons: Evolution of the type-II optical character of CdTe/CdSe heteronanocrystals , 2010 .

[56]  Gobinda Chandra De,et al.  Effect of n-Si on the photocatalytic production of hydrogen by Pt-loaded CdS and CdS/ZnS catalyst , 1996 .

[57]  The-Vinh Nguyen,et al.  Water decomposition on TiO2–SiO2 and RuS2/TiO2–SiO2 photocatalysts: the effect of electronic characteristics , 2004 .

[58]  M. Anpo,et al.  Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2 , 2003 .

[59]  Zhiliang Jin,et al.  5.1% Apparent quantum efficiency for stable hydrogen generation over eosin-sensitized CuO/TiO2 photocatalyst under visible light irradiation , 2007 .

[60]  U. Banin,et al.  Determination of band offsets in heterostructured colloidal nanorods using scanning tunneling spectroscopy. , 2008, Nano letters.

[61]  M. Bonn,et al.  Spectroscopic Studies of Electron Injection in Quantum Dot Sensitized Mesoporous Oxide Films , 2010 .

[62]  Peidong Yang,et al.  Selective growth of metal and binary metal tips on CdS nanorods. , 2008, Journal of the American Chemical Society.

[63]  M. Anpo,et al.  The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation , 2003 .

[64]  Andreas Kornowski,et al.  Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine-Trioctylphosphine Oxide-Trioctylphospine Mixture. , 2001, Nano letters.

[65]  Rufino M. Navarro,et al.  Hydrogen production from renewable sources: biomass and photocatalytic opportunities , 2009 .

[66]  Luigi Carbone,et al.  Colloidal heterostructured nanocrystals: Synthesis and growth mechanisms , 2010 .

[67]  K. Domen,et al.  Sulfur-substituted and zinc-doped In(OH)3: A new class of catalyst for photocatalytic H2 production from water under visible light illumination , 2006 .

[68]  S. Anandan,et al.  Dye sensitized hydrogen evolution from water , 2001 .