The spatial resolution performance of a time-resolved optical imaging system using temporal extrapolation.

Optical imaging methods are being explored as a potential means of screening for breast cancer. Previous investigations of time-resolved imaging techniques have suggested that due to the lack of photons with sufficiently small pathlengths, the spatial resolution achievable through a human breast would be unlikely to be better than a centimeter. Experimental results presented here indicate, however, that higher resolution may be achieved by extrapolating the measured temporal distribution of transmitted photons. This is performed using a least-squares fit between data and an analytic model of photon transport. The spatial resolution of a time-resolved imaging system was evaluated by measuring the edge response produced by an opaque mask embedded in the center of a 51-mm-thick, very highly scattering medium. The limiting spatial resolution was improved from about 13 mm to about 5 mm.