Dimension Reduction and Remote Sensing Using Modern Harmonic Analysis

Harmonic analysis has interleaved creatively and productively with remote sensing to address effectively some of the most difficult dimension reduction problems of modern times. These problems are part and parcel of fundamental ideas in machine learning and data mining, dealing with a host of data collection and data fusion technologies. Linear dimension reduction methods are the starting point herein, which themselves lead to the formulation of non-linear dimension reduction algorithms necessary to resolve information preserving dimension reduction associated with the likes of hyperspectral imagery and LIDAR data. Harmonic analysis arises in the form of data dependent non-linear kernel eigenmap methods, and it is fundamental to design and optimize techniques such as Laplacian and Schroedinger eigenmaps. These are exposited. Further, the fundamental roles in remote sensing of the theories of frames, compressed sensing, sparse representations, and diffusion-based image processing are explained. Significant examples and major applications are described.

[1]  J. Benedetto Harmonic Analysis and Applications , 2020 .

[2]  Ronald R. Coifman,et al.  Brushlets: A Tool for Directional Image Analysis and Image Compression , 1997 .

[3]  Tony F. Chan,et al.  Total Variation Wavelet Inpainting , 2006, Journal of Mathematical Imaging and Vision.

[4]  J. Kovacevic,et al.  Life Beyond Bases: The Advent of Frames (Part II) , 2007, IEEE Signal Processing Magazine.

[5]  Wang-Q Lim,et al.  The Theory of Wavelets with Composite Dilations , 2006 .

[6]  P G Cazassa,et al.  FRAMES OF SUBSPACES. WAVELETS, FRAMES AND OPERATOR THEORY , 2004 .

[7]  Thomas L. Ainsworth,et al.  Exploiting manifold geometry in hyperspectral imagery , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[8]  G. Easley,et al.  Directional Wavelets and a Wavelet Variogram for Two-Dimensional Data , 2009 .

[9]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[10]  Nate Strawn Geometric structures and optimization on spaces of finite frames , 2011 .

[11]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[12]  L. Landau,et al.  On the theory of superconductivity , 1955 .

[13]  Chi-Ren Shyu,et al.  Image Analysis for Mapping Immeasurable Phenotypes in Maize [Life Sciences] , 2007, IEEE Signal Processing Magazine.

[14]  Glenn R. Easley,et al.  Shearlet-Based Total Variation Diffusion for Denoising , 2009, IEEE Transactions on Image Processing.

[15]  John A. Antoniades,et al.  Use of filter vectors in hyperspectral data analysis , 1995, Optics & Photonics.

[16]  Tony F. Chan,et al.  Image processing and analysis - variational, PDE, wavelet, and stochastic methods , 2005 .

[17]  Özgür Yilmaz,et al.  Alternative dual frames for digital-to-analog conversion in sigma–delta quantization , 2010, Adv. Comput. Math..

[18]  J. Boardman,et al.  Mapping target signatures via partial unmixing of AVIRIS data: in Summaries , 1995 .

[19]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[20]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[21]  Wojciech Czaja,et al.  Schroedinger Eigenmaps for the Analysis of Biomedical Data , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  D. Donoho Wedgelets: nearly minimax estimation of edges , 1999 .

[23]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .

[24]  M. Hirn Enumeration of Harmonic Frames and Frame Based Dimension Reduction , 2009 .

[25]  Antonin Chambolle,et al.  Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage , 1998, IEEE Trans. Image Process..

[26]  S. Mallat A wavelet tour of signal processing , 1998 .

[27]  Wang-Q Lim,et al.  Sparse multidimensional representation using shearlets , 2005, SPIE Optics + Photonics.

[28]  John B. Greer,et al.  Hyperspectral Demixing: Sparse Recovery of Highly Correlated Endmembers , 2013 .

[29]  David P. Widemann Dimensionality reduction for hyperspectral data , 2008 .

[30]  Charles K. Chui,et al.  Dimensionality Reduction of Hyperspectral Imagery Data for Feature Classification , 2010 .

[31]  John J. Benedetto,et al.  Frame based kernel methods for automatic classification in hyperspectral data , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[32]  John J. Benedetto,et al.  Wavelet packets for multi- and hyper-spectral imagery , 2010, Electronic Imaging.

[33]  Bruno A. Olshausen,et al.  Learning Sparse Codes for Hyperspectral Imagery , 2011, IEEE Journal of Selected Topics in Signal Processing.

[34]  John J. Benedetto,et al.  Semi-supervised learning of heterogeneous data in remote sensing imagery , 2012, Defense + Commercial Sensing.

[35]  Richard G. Baraniuk,et al.  Random Projections of Smooth Manifolds , 2009, Found. Comput. Math..

[36]  Wojciech Czaja,et al.  Composite wavelet representations for reconstruction of missing data , 2013, Defense, Security, and Sensing.

[37]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[38]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[39]  Hidemitsu Ogawa,et al.  Pseudoframes for subspaces with applications , 1998, Optics & Photonics.

[40]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[41]  Wojciech Czaja,et al.  Multiscale and multidirectional tight frames for image analysis , 2013 .

[42]  Anupam Gupta,et al.  An elementary proof of the Johnson-Lindenstrauss Lemma , 1999 .

[43]  P. Casazza,et al.  Frames of subspaces , 2003, math/0311384.

[44]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[45]  Minh N. Do,et al.  Contourlets: a directional multiresolution image representation , 2002, Proceedings. International Conference on Image Processing.

[46]  Wenchang Sun G-frames and G-Riesz Bases ⁄ , 2005, math/0508104.

[47]  R. Duffin,et al.  A class of nonharmonic Fourier series , 1952 .

[48]  Guillermo Sapiro,et al.  Spatially Coherent Nonlinear Dimensionality Reduction and Segmentation of Hyperspectral Images , 2007, IEEE Geoscience and Remote Sensing Letters.

[49]  Alexey Castrodad Graph-based denoising and classification of hyperspectral imagery using nonlocal operators , 2009, Defense + Commercial Sensing.

[50]  Willi Freeden,et al.  Handbook of geomathematics , 2010 .

[51]  Rama Chellappa,et al.  Compressed Synthetic Aperture Radar , 2010, IEEE Journal of Selected Topics in Signal Processing.

[52]  D. Donoho,et al.  Sparse nonnegative solution of underdetermined linear equations by linear programming. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Kevin W. Duke A Study of the Relationship Between Spectrum and Geometry Through Fourier Frames and Laplacian Eigenmaps , 2012 .

[54]  Arthur D. Szlam,et al.  Diffusion wavelet packets , 2006 .

[55]  John J. Benedetto,et al.  Applied and numerical harmonic analysis , 1997 .

[56]  R. Coifman,et al.  Geometric harmonics: A novel tool for multiscale out-of-sample extension of empirical functions , 2006 .

[57]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[58]  H. Ogawa,et al.  Pseudoframes for Subspaces with Applications , 2004 .

[59]  Alon Zakai,et al.  Manifold Learning: The Price of Normalization , 2008, J. Mach. Learn. Res..

[60]  Ann B. Lee,et al.  Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[61]  John J. Benedetto,et al.  Finite Normalized Tight Frames , 2003, Adv. Comput. Math..

[62]  B. Torrésani,et al.  Wavelets: Mathematics and Applications , 1994 .

[63]  A. Aldroubi,et al.  Wavelets on irregular grids with arbitrary dilation matrices and frame atoms for L2(Rd) , 2004, math/0703438.

[64]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[65]  Andrea L. Bertozzi,et al.  Analysis of a Two-Scale Cahn-Hilliard Model for Binary Image Inpainting , 2007, Multiscale Model. Simul..

[66]  J. Flake The Multiplicative Zak Transform, Dimension Reduction, and Wavelet Analysis of LIDAR Data , 2010 .

[67]  D. Donoho,et al.  Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[68]  Jelena Kovačević,et al.  Life Beyond Bases: The Advent of Frames , 2006 .

[69]  Josef Stoer,et al.  Numerische Mathematik 1 , 1989 .

[70]  G. Easley,et al.  Shearlet Based Total Variation for Denoising , 2022 .

[71]  Michel Verleysen,et al.  Nonlinear Dimensionality Reduction , 2021, Computer Vision.

[72]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[73]  Andrea L. Bertozzi,et al.  Analysis of the Wavelet Ginzburg-Landau Energy in Image Applications with Edges , 2013, SIAM J. Imaging Sci..

[74]  M. Maggioni,et al.  GEOMETRIC DIFFUSIONS AS A TOOL FOR HARMONIC ANALYSIS AND STRUCTURE DEFINITION OF DATA PART I: DIFFUSION MAPS , 2005 .

[75]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[76]  Avner Halevy Extensions of Laplacian Eigenmaps for Manifold Learning , 2011 .

[77]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[78]  John J. Benedetto,et al.  Integration of heterogeneous data for classification in hyperspectral satellite imagery , 2012, Defense + Commercial Sensing.

[79]  Heike Emmerich,et al.  The Diffuse Interface Approach in Materials Science: Thermodynamic Concepts and Applications of Phase-Field Models , 2003 .

[80]  Amit Banerjee,et al.  A machine learning approach for finding hyperspectral endmembers , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[81]  D. Donoho,et al.  Hessian Eigenmaps : new locally linear embedding techniques for high-dimensional data , 2003 .

[82]  Mario Winter,et al.  N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data , 1999, Optics & Photonics.

[83]  David Gillis,et al.  An Introduction to Hyperspectral Image Data Modeling , 2013 .

[84]  Edward H. Bosch,et al.  Tight frames for multiscale and multidirectional image analysis , 2013, Defense, Security, and Sensing.

[85]  David J. Brady,et al.  Exploitation Performance and Characterization of a Prototype Compressive Sensing Imaging Spectrometer , 2013 .

[86]  Yonina C. Eldar,et al.  Oblique dual frames and shift-invariant spaces , 2004 .

[87]  Andrea L. Bertozzi,et al.  Wavelet analogue of the Ginzburg–Landau energy and its Γ-convergence , 2010 .

[88]  P. Casazza THE ART OF FRAME THEORY , 1999, math/9910168.

[89]  ChambolleA.,et al.  Nonlinear wavelet image processing , 1998 .

[90]  John J. Benedetto,et al.  Gabor frames for L2 and related spaces , 2021, Wavelets.

[91]  Mikhail Belkin,et al.  Towards a Theoretical Foundation for Laplacian-Based Manifold Methods , 2005, COLT.

[92]  R. Coifman,et al.  Diffusion Wavelets , 2004 .

[93]  P. Lions,et al.  Image recovery via total variation minimization and related problems , 1997 .

[94]  Andrea L. Bertozzi,et al.  A Wavelet-Laplace Variational Technique for Image Deconvolution and Inpainting , 2008, IEEE Transactions on Image Processing.

[95]  Jianzhong Wang,et al.  Randomized anisotropic transform for nonlinear dimensionality reduction , 2010 .

[96]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[97]  Nate Strawn Geometric optimization on spaces of finite frames , 2011, Optical Engineering + Applications.

[98]  S. Esedoglu,et al.  ANALYSIS OF A TWO-SCALE CAHN-HILLIARD MODEL FOR IMAGE INPAINTING , 2006 .

[99]  D. Donoho,et al.  Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA) , 2005 .

[100]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[101]  Jelena Kovacevic,et al.  An Introduction to Frames , 2008, Found. Trends Signal Process..

[102]  U. Feige,et al.  Spectral Graph Theory , 2015 .