Semiconductor research at Bellcore

The authors attempt to portray the nature of semiconductor research at Bellcore and the ways in which this research serves Bellcore and its seven owners. The semiconductor research at Bellcore supports the Regional Companies' long-range vision of broadband, intelligent, and friendly networks. Through the ideas and information emerging from this research, Bellcore and the owners get some of the clearest early indicators of the shape and performance of networks and services to come. Besides specialized information provided to other Bellcore organizations and the owners, experimental models of new devices are incorporated into Bellcore's system experiments. Examples of research results are described in the areas of VLSI design, photonic and high-speed electronic devices, and integrated optoelectronics and novel optical devices. The values of the consortium mode to both the owners and the research activity itself are briefly reviewed. >

[1]  R. Stolen,et al.  Self-phase modulation and optical pulse compression influenced by stimulated Raman scattering in fibers , 1988 .

[2]  P. Kaiser,et al.  Coherent lightwave systems for interoffice and loop-feeder applications , 1987 .

[3]  Leonid G. Kazovsky,et al.  Balanced phase-locked loops for optical homodyne receivers: Performance analysis, design considerations, and laser linewidth requirements , 1986 .

[4]  L. Kazovsky Decision-driven phase-locked loop for optical homodyne receivers: Performance analysis and laser linewidth requirements , 1985, IEEE Transactions on Electron Devices.

[5]  J P Heritage,et al.  Encoding and decoding of femtosecond pulses. , 1988, Optics letters.

[6]  R. Bhat,et al.  High performance GaAs MESFETs grown on InP substrates by MOCVD , 1988 .

[7]  Andrew M. Weiner,et al.  Spectral windowing of frequency‐modulated optical pulses in a grating compressor , 1985 .

[8]  E. Kapon,et al.  Low‐loss single‐mode GaAs/AlGaAs optical waveguides grown by organometallic vapor phase epitaxy , 1987 .

[9]  E. Yablonovitch,et al.  Extreme selectivity in the lift‐off of epitaxial GaAs films , 1987 .

[10]  W. C. Young,et al.  Bidirectional LED transmission on single-mode fibre in the 1300 and 1500 nm wavelength regions , 1985 .

[11]  S. Miller,et al.  On low-power semiconductor laser design , 1987 .

[12]  Lloyd R. Linnell A Wide-Band Local Access System Using Emerging-Technology Components , 1986, IEEE J. Sel. Areas Commun..

[13]  Sadao Fujita,et al.  Long-wavelength PINFET receiver OEIC on a GaAs-on-InP heterostructure , 1987 .

[14]  J. P. Harbison,et al.  Patterned quantum well semiconductor injection laser grown by molecular beam epitaxy , 1988 .

[15]  Design theory of electrically frequency-controlled narrow-linewidth semiconductor lasers for coherent optical communication systems , 1987 .

[16]  J. L. Gimlett,et al.  Demonstration of high capacity in the LAMBDANET architecture: a multiwavelength optical network , 1987 .

[17]  Antoni S. Gozdz,et al.  Poly(3-Butenyltrimethylsilane Sulfone): A Sensitive Positive Electron-Beam Resist For Two-Layer Systems , 1986, Advanced Lithography.

[18]  S. G. Menocal,et al.  Characteristics of linewidth narrowing of a 1.5 μm DFB laser with a short GRIN-rod external coupled cavity , 1985 .

[19]  R. Schmidt,et al.  Directional coupler switches, modulators, and filters using alternating Δβ techniques (Invited Paper) , 1979 .

[20]  M. Fukuda,et al.  Correlation between degradation and device characteristic changes in InGaAsP/InP buried heterostructure lasers , 1986 .

[21]  J. Gimlett,et al.  Dispersion penalty analysis for LED/single-mode fiber transmission systems , 1986, Journal of Lightwave Technology.

[22]  W. C. Young,et al.  Dispersion penalties for single-mode-fibre transmission using 1.3 and 1.5 μm LEDs , 1985 .

[23]  Takaaki Mukai,et al.  Broadband 1.5μm GaInAsP travelling-wave laser amplifier with high-saturation output power , 1987 .

[24]  C. Zah,et al.  Narrow-linewidth 1.3 mu m DFB-DCPBH lasers with lambda /4-shifted first-order gratings fabricated by electron beam lithography using a new fast resist , 1988 .

[25]  Leonid G. Kazovsky,et al.  Optical Heterodyning Versus Optical Homodyning: A Comparison , 1985 .

[26]  Leonid G. Kazovsky,et al.  Impact of Laser Phase Noise on Optical Heterodyne Communication Systems , 1986 .

[27]  Joseph H. Abeles,et al.  Novel optoelectronic single quantum well devices based on electron bleaching of exciton absorption , 1987 .

[28]  J. L. Gimlett,et al.  Transmission of 140 Mbit/s signals over single-mode fibre using surface- and edge-emitting 1.3 μm LEDs , 1985 .

[29]  Axel Scherer,et al.  Fast direct e-beam lithographic fabrication of first-order gratings for 1.3 μm DFB lasers , 1988 .

[30]  W. K. Chan,et al.  Epitaxial growth of GaAs/NiAl/GaAs heterostructures , 1988 .

[31]  G. Chang,et al.  Transmission experiments at 560 Mbit/s and 140 Mbit/s using single-mode fibre and 1300 nm LEDs , 1985 .

[32]  Hung-Hsiang Jonathan Chao,et al.  A 140 Mbit/s CMOS LSI framer chip for a broad-band ISDN local access system , 1988 .

[33]  A. Kastalsky,et al.  Novel high‐speed transistor based on charge emission from a quantum well , 1988 .

[34]  Andrew M. Weiner,et al.  Analysis of picosecond pulse shape synthesis by spectral masking in a grating pulse compressor , 1986 .

[35]  E. Kapon,et al.  Low-threshold patterned quantum well lasers grown by molecular beam epitaxy , 1988 .

[36]  C. Caneau,et al.  Fabrication and performance of 1.5μm GaInAsP travelling-wave laser amplifiers with angled facets , 1987 .

[37]  P. W. Shumate,et al.  Laser coupling to single-mode fibre using graded-index lenses and compact disc 1.3 μm laser package , 1986 .

[38]  J. Hayes,et al.  Atomic layer epitaxy grown heterojunction bipolar transistor having a carbon-doped base , 1988, IEEE Electron Device Letters.

[39]  P. W. Shumate Temperature effects on dispersion and loss for high-bit-rate LED-based lightwave systems , 1986 .

[40]  Dan Spears Broadband ISDN Switching Capabilities from a Services Perspective , 1987, IEEE J. Sel. Areas Commun..

[41]  R. N. Nottenburg,et al.  Dramatic enhancement in the gain of a GaAs/AlGaAs heterostructure bipolar transistor by surface chemical passivation , 1987 .

[42]  Leonid G. Kazovsky,et al.  Performance analysis and laser linewidth requirements for optical PSK heterodyne communications systems , 1986 .

[43]  Charles A. Brackett A View of the Emerging Photonic Network , 1986, ICC.

[44]  Haim Kobrinski,et al.  Application of Wavelength Division Multiplexing to Communication Network Architectures , 1986, ICC.

[46]  Andrew M. Weiner,et al.  Picosecond and femtosecond Fourier pulse shape synthesis , 1987 .

[47]  Albert M. Gottlieb,et al.  CMOS VLSI Applications in Broadband Circuit Switching , 1987, IEEE J. Sel. Areas Commun..

[48]  Eli Kapon,et al.  Molecular beam epitaxy of GaAs/AlGaAs superlattice heterostructures on nonplanar substrates , 1987 .

[49]  Leonid G. Kazovsky Coherent Optical Receivers: Performance Analysis And Laser Linewidth Requirements , 1986 .

[50]  J P Heritage,et al.  Picosecond pulse shaping by spectral phase and amplitude manipulation. , 1985, Optics letters.

[51]  T. Itoh,et al.  GaAs MESFET's fabricated on InP substrates , 1987, IEEE Electron Device Letters.

[52]  D. G. Boyer,et al.  High-speed 16×16 CMOS crosspoint switch , 1985 .

[53]  A. Bergh,et al.  Optical sources for fiber transmission systems , 1980, Proceedings of the IEEE.

[54]  C. A. Burrus,et al.  Measured spectral linewidth of single-frequency 1.3 and 1.5 μm injection lasers , 1984 .

[55]  S. G. Menocal,et al.  Operating characteristics of double-sectioned distributed feedback lasers , 1988 .

[56]  L. Reith,et al.  Coupling sensitivity of an edge-emitting LED to single-mode fiber , 1987 .