Polymeric "smart" coatings to prevent foreign body response to implantable biosensors.

[1]  Fotios Papadimitrakopoulos,et al.  Controlling Acute Inflammation with Fast Releasing Dexamethasone-PLGA Microsphere/PVA Hydrogel Composites for Implantable Devices , 2007, Journal of diabetes science and technology.

[2]  Diane J. Burgess,et al.  Evaluation of in vivo-in vitro release of dexamethasone from PLGA microspheres. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[3]  W. H. Sheldon,et al.  TISSUE MAST CELLS AND ACUTE INFLAMMATION IN EXPERIMENTAL CUTANEOUS MUCORMYCOSIS OF NORMAL, 48/80-TREATED, AND DIABETIC RATS , 1960, The Journal of experimental medicine.

[4]  Fotios Papadimitrakopoulos,et al.  A Review of the Biocompatibility of Implantable Devices: Current Challenges to Overcome Foreign Body Response , 2008, Journal of diabetes science and technology.

[5]  L. DiPietro,et al.  Factors Affecting Wound Healing , 2010, Journal of dental research.

[6]  Wisniewski,et al.  Methods for reducing biosensor membrane biofouling. , 2000, Colloids and surfaces. B, Biointerfaces.

[7]  D. Burgess,et al.  Effect of ethanol as a processing co-solvent on the PLGA microsphere characteristics. , 2010, International journal of pharmaceutics.

[8]  Joseph Wang,et al.  Glucose Biosensors: 40 Years of Advances and Challenges , 2001 .

[9]  Fotios Papadimitrakopoulos,et al.  Biomaterials/Tissue Interactions: Possible Solutions to Overcome Foreign Body Response , 2010, The AAPS Journal.

[10]  G. S. Wilson,et al.  Biosensors for real-time in vivo measurements. , 2005, Biosensors & bioelectronics.

[11]  Santhisagar Vaddiraju,et al.  Technologies for Continuous Glucose Monitoring: Current Problems and Future Promises , 2010, Journal of diabetes science and technology.

[12]  J. A. Hubbell,et al.  Photo-crosslinked copolymers of 2-hydroxyethyl methacrylate, poly(ethylene glycol) tetra-acrylate and ethylene dimethacrylate for improving biocompatibility of biosensors. , 1995, Biomaterials.

[13]  F. Papadimitrakopoulos,et al.  Microsphere erosion in outer hydrogel membranes creating macroscopic porosity to counter biofouling-induced sensor degradation. , 2012, Analytical chemistry.

[14]  Diane J Burgess,et al.  Concurrent delivery of dexamethasone and VEGF for localized inflammation control and angiogenesis. , 2007, Journal of controlled release : official journal of the Controlled Release Society.

[15]  F. Papadimitrakopoulos,et al.  Dexamethasone-loaded poly(lactic-co-glycolic) acid microspheres/poly(vinyl alcohol) hydrogel composite coatings for inflammation control. , 2004, Diabetes technology & therapeutics.

[16]  J. Vane,et al.  Inflammation and the mechanism of action of anti‐inflammatory drugs , 1987, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[17]  W M Reichert,et al.  Vascular endothelial growth factor and dexamethasone release from nonfouling sensor coatings affect the foreign body response. , 2007, Journal of biomedical materials research. Part A.

[18]  F Moussy,et al.  Dexamethasone/PLGA microspheres for continuous delivery of an anti-inflammatory drug for implantable medical devices. , 2002, Biomaterials.

[19]  Fotios Papadimitrakopoulos,et al.  PLGA/PVA hydrogel composites for long-term inflammation control following s.c. implantation. , 2010, International journal of pharmaceutics.

[20]  James M. Anderson,et al.  Biological Responses to Materials , 2001 .