An Introduction to Super-Resolution Imaging

“Super-resolution” is the term used to denote the subset of imaging processing that tries to estimate a high-resolution image of a scene, given a set of low-resolution observations (Fig. 1). Colloquially, when superresolution researchers try to describe what they do to family, friends, and loved ones, we can use the example from the TV show CSI: whenever someone on CSI looks at low-resolution security camera footage, pushes the magic “Enhance” button, and then suddenly the footage is crystal clear, that character is using super-resolution. The programs that we write in super-resolution research are like the real-life version of the “Enhance” button.

[1]  William T. Freeman,et al.  What makes a good model of natural images? , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[2]  Vladimir Katkovnik,et al.  Multichannel image deblurring of raw color components , 2005, IS&T/SPIE Electronic Imaging.

[3]  Ron Kimmel,et al.  Demosaicing: Image Reconstruction from Color CCD Samples , 1998, ECCV.

[4]  Edmund Y. Lam,et al.  A Total Variation Regularization Based Super-Resolution Reconstruction Algorithm for Digital Video , 2007, EURASIP J. Adv. Signal Process..

[5]  Michael Elad,et al.  Generalizing the Nonlocal-Means to Super-Resolution Reconstruction , 2009, IEEE Transactions on Image Processing.

[6]  E. H. Linfoot Principles of Optics , 1961 .

[7]  Takeo Kanade,et al.  Limits on super-resolution and how to break them , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[8]  Robert L. Stevenson,et al.  Robust grid registration for non-blind PSF estimation , 2012, Other Conferences.

[9]  Anup Basu,et al.  Choice of low resolution sample sets for efficient super-resolution signal reconstruction , 2012, J. Vis. Commun. Image Represent..

[10]  Michael Elad,et al.  Multiframe demosaicing and super-resolution of color images , 2006, IEEE Transactions on Image Processing.

[11]  Peyman Milanfar,et al.  Optimal Registration Of Aliased Images Using Variable Projection With Applications To Super-Resolution , 2008, Comput. J..

[12]  Luis Alvarez,et al.  Motion Estimation Techniques in Super-Resolution Image Reconstruction. A Performance Evaluation , 2006 .

[13]  Sebastián López,et al.  Analysis of fast block matching motion estimation algorithms for video super-resolution systems , 2008, IEEE Transactions on Consumer Electronics.

[14]  Mads Nielsen,et al.  Video Super-Resolution Using Simultaneous Motion and Intensity Calculations , 2011, IEEE Transactions on Image Processing.

[15]  Simon Baker,et al.  Lucas-Kanade 20 Years On: A Unifying Framework , 2004, International Journal of Computer Vision.

[16]  Bobby Bodenheimer,et al.  Synthesis and evaluation of linear motion transitions , 2008, TOGS.

[17]  Robert L. Stevenson,et al.  A Bayesian approach to image expansion for improved definitio , 1994, IEEE Trans. Image Process..

[18]  Li Chen,et al.  A Nonlinear Least Square Technique for Simultaneous Image Registration and Super-Resolution , 2007, IEEE Transactions on Image Processing.

[19]  Michael Elad,et al.  Video-to-Video Dynamic Super-Resolution for Grayscale and Color Sequences , 2006, EURASIP J. Adv. Signal Process..

[20]  Gerald C. Holst,et al.  CCD arrays, cameras, and displays , 1996 .

[21]  J. Nagy,et al.  Numerical methods for coupled super-resolution , 2006 .

[22]  Richard Szeliski,et al.  PSF estimation using sharp edge prediction , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[23]  Aggelos K. Katsaggelos,et al.  Parameter estimation in Bayesian high-resolution image reconstruction with multisensors , 2003, IEEE Trans. Image Process..

[24]  Jiaya Jia,et al.  High-quality motion deblurring from a single image , 2008, ACM Trans. Graph..

[25]  Reginald L. Lagendijk,et al.  Regularized iterative image restoration with ringing reduction , 1988, IEEE Trans. Acoust. Speech Signal Process..

[26]  Fionn Murtagh,et al.  Virtual Observatory: Plate Content Digitization, Archive Mining and Image Sequence Processing, , COST Action 283, in the Einstein Year of Physics, 2005 , 2006 .

[27]  Yihong Gong,et al.  Visual‐Quality Optimizing Super Resolution , 2009, Comput. Graph. Forum.

[28]  Jean Ponce,et al.  Non-uniform Deblurring for Shaken Images , 2012, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[29]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[30]  Aggelos K. Katsaggelos,et al.  Bayesian high resolution image reconstruction with incomplete multisensor low resolution systems , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[31]  Michael Elad,et al.  Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images , 1997, IEEE Trans. Image Process..

[32]  Thomas S. Huang,et al.  Advances in computer vision and image processing : a research annual , 1984 .

[33]  Jan Flusser,et al.  A Unified Approach to Superresolution and Multichannel Blind Deconvolution , 2007, IEEE Transactions on Image Processing.

[34]  Masatoshi Okutomi,et al.  Direct super-resolution and registration using raw CFA images , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[35]  Sabine Süsstrunk,et al.  Super-resolution from highly undersampled images , 2005, IEEE International Conference on Image Processing 2005.

[36]  Tom E. Bishop,et al.  Blind Image Restoration Using a Block-Stationary Signal Model , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[37]  Aggelos K. Katsaggelos,et al.  Variational Bayesian Blind Deconvolution Using a Total Variation Prior , 2009, IEEE Transactions on Image Processing.

[38]  Robert L. Stevenson,et al.  Linear models for multiframe super-resolution restoration under nonaffine registration and spatially varying PSF , 2004, IS&T/SPIE Electronic Imaging.

[39]  Sean Borman,et al.  Topics in Multiframe Superresolution Restoration , 2004 .

[40]  Zoran A. Ivanovski,et al.  An Efficient Selective Perceptual-Based Super-Resolution Estimator , 2011, IEEE Transactions on Image Processing.