Effect of different sintering aids on thermo–mechanical properties and oxidation of SiC fibers – Reinforced ZrB2 composites

[1]  D. Sciti,et al.  Aerothermal behaviour of a SiC fibre-reinforced ZrB2 sharp component in supersonic regime , 2012 .

[2]  Y. Sakka,et al.  Strong ZrB2–SiC–WC Ceramics at 1600°C , 2012 .

[3]  V. Medri,et al.  Pressureless sintered in situ toughened ZrB2–SiC platelets ceramics , 2011 .

[4]  D. Sciti,et al.  Oxidation of ZrB2 Ceramics Containing SiC as Particles, Whiskers, or Short Fibers , 2011 .

[5]  D. Sciti,et al.  Densification of ZrB2–TaSi2 and HfB2–TaSi2 Ultra‐High‐Temperature Ceramic Composites , 2011 .

[6]  G. Hilmas,et al.  Mechanical properties of sintered ZrB2–SiC ceramics , 2011 .

[7]  D. Sciti,et al.  SiC chopped fibers reinforced ZrB2: Effect of the sintering aid , 2011 .

[8]  M. Nygren,et al.  Microstructure and Toughening Mechanisms in Spark Plasma-Sintered ZrB2 Ceramics Reinforced by SiC Whiskers or SiC-Chopped Fibers , 2010 .

[9]  D. Sciti,et al.  Toughened ZrB2-based ceramics through SiC whisker or SiC chopped fiber additions , 2010 .

[10]  H. Kleebe,et al.  Transmission electron microscopy on Zr- and Hf-borides with MoSi_2 addition: Densification mechanisms , 2010 .

[11]  J. Zou,et al.  Formation of tough interlocking microstructure in ZrB_2—SiC-based ultrahigh-temperature ceramics by pressureless sintering , 2009 .

[12]  S. Guo,et al.  Densification of ZrB2-based composites and their mechanical and physical properties: A review , 2009 .

[13]  Jiecai Han,et al.  Processing and characterization of ZrB2–SiCW ultra-high temperature ceramics , 2009 .

[14]  Jiecai Han,et al.  Microstructure and properties of silicon carbide whisker reinforced zirconium diboride ultra-high temperature ceramics , 2009 .

[15]  Jiecai Han,et al.  Spark plasma sintering and hot pressing of ZrB2–SiCW ultra-high temperature ceramics , 2008 .

[16]  D. Fang,et al.  Processing and Mechanical Properties of Zirconium Diboride‐Based Ceramics Prepared by Spark Plasma Sintering , 2007 .

[17]  William G. Fahrenholtz,et al.  Refractory Diborides of Zirconium and Hafnium , 2007 .

[18]  F. Monteverde,et al.  Resistance to Thermal Shock and to Oxidation of Metal Diborides–SiC Ceramics for Aerospace Application , 2007 .

[19]  William G. Fahrenholtz,et al.  Thermodynamic Analysis of ZrB2–SiC Oxidation: Formation of a SiC‐Depleted Region , 2007 .

[20]  D. Sciti,et al.  Oxidation behavior of a pressureless sintered ZrB_2–MoSi_2 ceramic composite , 2005 .

[21]  Bi Zhang,et al.  Grinding induced damage in ceramics , 2003 .

[22]  C. Tang,et al.  Surface integrity and modification of electro-discharge machined alumina-based ceramic composite , 2002 .

[23]  Alida Bellosi,et al.  Effect of the addition of silicon nitride on sintering behaviour and microstructure of zirconium diboride , 2002 .

[24]  Y. Morisada,et al.  Oxidation Behavior of Si‐C‐O Fibers (Nicalon) under Oxygen Partial Pressures from 102 to 105 Pa at 1773 k , 2000 .

[25]  A. Bunsell,et al.  Microstructure and thermo‐mechanical stability of a low‐oxygen Nicalon fibre , 1995 .

[26]  H. Okamoto The Si-Zr (Silicon-Zirconium) system , 1990 .

[27]  G. Levy,et al.  EDM-Future Steps towards the Machining of Ceramics , 1988 .

[28]  Anthony G. Evans,et al.  Crack deflection processes—I. Theory , 1983 .

[29]  D. Munz,et al.  Fracture toughness calculation from maximum load in four point bend tests of chevron notch specimens , 1980 .

[30]  D. Hasselman,et al.  Unified Theory of Thermal Shock Fracture Initiation and Crack Propagation in Brittle Ceramics , 1969 .