Effect of different sintering aids on thermo–mechanical properties and oxidation of SiC fibers – Reinforced ZrB2 composites
暂无分享,去创建一个
D. Sciti | D. Alfano | G. Saccone | L. Silvestroni | D. Alfano | D. Alfano
[1] D. Sciti,et al. Aerothermal behaviour of a SiC fibre-reinforced ZrB2 sharp component in supersonic regime , 2012 .
[2] Y. Sakka,et al. Strong ZrB2–SiC–WC Ceramics at 1600°C , 2012 .
[3] V. Medri,et al. Pressureless sintered in situ toughened ZrB2–SiC platelets ceramics , 2011 .
[4] D. Sciti,et al. Oxidation of ZrB2 Ceramics Containing SiC as Particles, Whiskers, or Short Fibers , 2011 .
[5] D. Sciti,et al. Densification of ZrB2–TaSi2 and HfB2–TaSi2 Ultra‐High‐Temperature Ceramic Composites , 2011 .
[6] G. Hilmas,et al. Mechanical properties of sintered ZrB2–SiC ceramics , 2011 .
[7] D. Sciti,et al. SiC chopped fibers reinforced ZrB2: Effect of the sintering aid , 2011 .
[8] M. Nygren,et al. Microstructure and Toughening Mechanisms in Spark Plasma-Sintered ZrB2 Ceramics Reinforced by SiC Whiskers or SiC-Chopped Fibers , 2010 .
[9] D. Sciti,et al. Toughened ZrB2-based ceramics through SiC whisker or SiC chopped fiber additions , 2010 .
[10] H. Kleebe,et al. Transmission electron microscopy on Zr- and Hf-borides with MoSi_2 addition: Densification mechanisms , 2010 .
[11] J. Zou,et al. Formation of tough interlocking microstructure in ZrB_2—SiC-based ultrahigh-temperature ceramics by pressureless sintering , 2009 .
[12] S. Guo,et al. Densification of ZrB2-based composites and their mechanical and physical properties: A review , 2009 .
[13] Jiecai Han,et al. Processing and characterization of ZrB2–SiCW ultra-high temperature ceramics , 2009 .
[14] Jiecai Han,et al. Microstructure and properties of silicon carbide whisker reinforced zirconium diboride ultra-high temperature ceramics , 2009 .
[15] Jiecai Han,et al. Spark plasma sintering and hot pressing of ZrB2–SiCW ultra-high temperature ceramics , 2008 .
[16] D. Fang,et al. Processing and Mechanical Properties of Zirconium Diboride‐Based Ceramics Prepared by Spark Plasma Sintering , 2007 .
[17] William G. Fahrenholtz,et al. Refractory Diborides of Zirconium and Hafnium , 2007 .
[18] F. Monteverde,et al. Resistance to Thermal Shock and to Oxidation of Metal Diborides–SiC Ceramics for Aerospace Application , 2007 .
[19] William G. Fahrenholtz,et al. Thermodynamic Analysis of ZrB2–SiC Oxidation: Formation of a SiC‐Depleted Region , 2007 .
[20] D. Sciti,et al. Oxidation behavior of a pressureless sintered ZrB_2–MoSi_2 ceramic composite , 2005 .
[21] Bi Zhang,et al. Grinding induced damage in ceramics , 2003 .
[22] C. Tang,et al. Surface integrity and modification of electro-discharge machined alumina-based ceramic composite , 2002 .
[23] Alida Bellosi,et al. Effect of the addition of silicon nitride on sintering behaviour and microstructure of zirconium diboride , 2002 .
[24] Y. Morisada,et al. Oxidation Behavior of Si‐C‐O Fibers (Nicalon) under Oxygen Partial Pressures from 102 to 105 Pa at 1773 k , 2000 .
[25] A. Bunsell,et al. Microstructure and thermo‐mechanical stability of a low‐oxygen Nicalon fibre , 1995 .
[26] H. Okamoto. The Si-Zr (Silicon-Zirconium) system , 1990 .
[27] G. Levy,et al. EDM-Future Steps towards the Machining of Ceramics , 1988 .
[28] Anthony G. Evans,et al. Crack deflection processes—I. Theory , 1983 .
[29] D. Munz,et al. Fracture toughness calculation from maximum load in four point bend tests of chevron notch specimens , 1980 .
[30] D. Hasselman,et al. Unified Theory of Thermal Shock Fracture Initiation and Crack Propagation in Brittle Ceramics , 1969 .