Characterization of non-deterministic quantum query and quantum communication complexity

It is known that the classical and quantum query complexities of a total Boolean function f are polynomially related to the degree of its representing polynomial, but the optimal exponents in these relations are unknown. We show that the non-deterministic quantum query complexity of f is linearly related to the degree of a "non-deterministic" polynomial for f. We also prove a quantum-classical gap of 1 vs. N for non-deterministic query complexity for a total f. In the case of quantum communication complexity there is a (partly undetermined) relation between the complexity of f and the logarithm of the rank of its communication matrix. We show that the non-deterministic quantum communication complexity of f is linearly related to the logarithm of the rank of a non-deterministic version of the communication matrix and that it can be exponentially smaller than its classical counterpart.

[1]  Christoph Meinel,et al.  The "log Rank" Conjecture for Modular Communication Complexity , 1996, STACS.

[2]  Ronald de Wolf,et al.  Bounds for small-error and zero-error quantum algorithms , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[3]  H. Buhrman,et al.  Complexity measures and decision tree complexity: a survey , 2002, Theor. Comput. Sci..

[4]  Alexei Y. Kitaev,et al.  Parallelization, amplification, and exponential time simulation of quantum interactive proof systems , 2000, STOC '00.

[5]  Avi Wigderson,et al.  Quantum vs. classical communication and computation , 1998, STOC '98.

[6]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[7]  Stephen A. Fenner,et al.  Determining acceptance possibility for a quantum computation is hard for the polynomial hierarchy , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[8]  Juris Hartmanis,et al.  One-Way Functions, Robustness, and the Non-Isomorphism of NP-Complete Sets , 1987, Proceeding Structure in Complexity Theory.

[9]  Andrew Chi-Chih Yao,et al.  Some complexity questions related to distributive computing(Preliminary Report) , 1979, STOC.

[10]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[11]  Richard Beigel,et al.  The polynomial method in circuit complexity , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[12]  Ran Raz,et al.  Exponential separation of quantum and classical communication complexity , 1999, STOC '99.

[13]  Andris Ambainis,et al.  The quantum communication complexity of sampling , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[14]  Eyal Kushilevitz,et al.  Communication Complexity , 1997, Adv. Comput..

[15]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[16]  Alexander A. Razborov,et al.  On the Distributional Complexity of Disjointness , 1992, Theor. Comput. Sci..

[17]  Leonard M. Adleman,et al.  Quantum Computability , 1997, SIAM J. Comput..

[18]  Ronald de Wolf,et al.  Communication complexity lower bounds by polynomials , 1999, Proceedings 16th Annual IEEE Conference on Computational Complexity.

[19]  А Е Китаев,et al.  Квантовые вычисления: алгоритмы и исправление ошибок@@@Quantum computations: algorithms and error correction , 1997 .

[20]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[21]  Lance Fortnow,et al.  Complexity limitations on quantum computation , 1999, J. Comput. Syst. Sci..

[22]  Gábor Tardos,et al.  Query complexity, or why is it difficult to separateNPA∩coNPA fromPA by random oraclesA? , 1989, Comb..

[23]  M. Sipser,et al.  Limit on the Speed of Quantum Computation in Determining Parity , 1998, quant-ph/9802045.

[24]  Ronald de Wolf,et al.  Quantum lower bounds by polynomials , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[25]  A. Berthiaume Quantum computation , 1998 .

[26]  Manuel Blum,et al.  Generic oracles and oracle classes , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[27]  R. Cleve An Introduction to Quantum Complexity Theory , 1999, quant-ph/9906111.

[28]  Gilles Brassard,et al.  Quantum Counting , 1998, ICALP.

[29]  Gilles Brassard,et al.  Quantum Algorithm for the Collision Problem , 2016, Encyclopedia of Algorithms.

[30]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[31]  Noam Nisan,et al.  On the degree of boolean functions as real polynomials , 1992, STOC '92.

[32]  Richard Cleve,et al.  The query complexity of order-finding , 1999, Proceedings 15th Annual IEEE Conference on Computational Complexity.

[33]  Gilles Brassard,et al.  An exact quantum polynomial-time algorithm for Simon's problem , 1997, Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems.

[34]  R. Cleve,et al.  SUBSTITUTING QUANTUM ENTANGLEMENT FOR COMMUNICATION , 1997, quant-ph/9704026.

[35]  Andrew Chi-Chih Yao,et al.  Quantum Circuit Complexity , 1993, FOCS.

[36]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..