An intelligent modeling approach for prediction of thermal conductivity of CO2

Abstract In the design of a carbon dioxide capture and storage (CCS) process, the thermal conductivity of carbon dioxide is of special concern. Hence, it is quite important to search for a quick and accurate determination of thermal conductivity of CO2 for precise modeling and evaluation of such a process. To achieve this aim, a robust computing methodology, entitled least square support vector machine (LSSVM) modeling, which is coupled with an optimization approach, was used to model this transport property. The model was constructed and evaluated employing a comprehensive data bank (more than 550 data series) covering wide ranges of pressures and temperatures. Before constructing the model, outlier detection was performed on the whole data bank to diagnose and delete erroneous measurements and doubtful data from the experimental dataset. It was found that the proposed LSSVM model had a very accurate prediction of thermal conductivity of CO2 with an average absolute relative error of 0.79% and a coefficient of determination of 0.999. In addition, more than 90% of the experimental data points were estimated with an absolute relative error smaller than 2% by the developed model.

[1]  David Lumley,et al.  Time-lapse seismic reservoir monitoring , 2001 .

[2]  W. Wakeham,et al.  The thermal conductivity of some electrically conducting liquids , 1987 .

[3]  Alireza Bahadori,et al.  Estimating thermal conductivity of hydrocarbons , 2008 .

[4]  Stefan Bachu,et al.  Screening, Evaluation, and Ranking of Oil Reservoirs Suitable for CO2-Flood EOR and Carbon Dioxide Sequestration , 2002 .

[5]  Stefan Bachu,et al.  Geological Sequestration of Anthropogenic Carbon Dioxide in the Western Canada Sedimentary Basin: Suitability Analysis , 2002 .

[6]  H. L. Johnston,et al.  An Improved Hot Wire Cell for Accurate Measurements of Thermal Conductivities of Gases over a Wide Temperature Range Results with Air between 87° and 375°K , 1946 .

[7]  E. Hamidpour,et al.  Evolving a robust approach for accurate prediction of methane hydrate formation temperature in the presence of salt inhibitor , 2014 .

[8]  CORRIGENDUM: Thermal conductivity and effective diffusion coefficient for vibrational energy : carbon dioxide (350 - 2000 K) , 1975 .

[9]  J. Sengers,et al.  The thermal conductivity of carbon dioxide in the critical region: I. The thermal conductivity apparatus , 1962 .

[10]  Neeraj Gupta,et al.  A CO2-storage supply curve for North America and its implications for the deployment of carbon dioxide capture and storage systems , 2005 .

[11]  J. Kestin,et al.  Thermal conductivity of N2, CH4 and CO2 at room temperature and at pressures up to 35 MPa , 1979 .

[12]  Ali Chamkalani,et al.  An intelligent approach for optimal prediction of gas deviation factor using particle swarm optimization and genetic algorithm , 2013 .

[13]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[14]  D. H. Johnston,et al.  Time‐lapse seismic analysis of Fulmar Field , 1998 .

[15]  B. L. Neindre Contribution a l'etude experimentale de la conductivite thermique de quelques fluides a haute temperature et a haute pression , 1972 .

[16]  C. M. White,et al.  Separation and Capture of CO2 from Large Stationary Sources and Sequestration in Geological Formations—Coalbeds and Deep Saline Aquifers , 2003, Journal of the Air & Waste Management Association.

[17]  William A. Wakeham,et al.  Absolute determination of the thermal conductivity of the noble gases and two of their binary mixtures as a function of density , 1981 .

[18]  J. B. Mann,et al.  THERMAL CONDUCTIVITY OF HELIUM AND HYDROGEN AT HIGH TEMPERATURES , 1960 .

[19]  E. Cohen,et al.  Analysis of the transport coefficients for simple dense fluid: Application of the modified Enskog theory , 1972 .

[20]  Jean-Charles de Hemptinne,et al.  Industrial Requirements for Thermodynamics and Transport Properties , 2010 .

[21]  A. Bahadori,et al.  Predictive tool for an accurate estimation of carbon dioxide transport properties , 2010 .

[22]  P. Buryan,et al.  Thermal Conductivity of Carbon Dioxide–Methane Mixtures at Temperatures Between 300 and 425 K and at Pressures up to 12 MPa , 2005 .

[23]  N. Mungan,et al.  An Evaluation of Carbon Dioxide Flooding , 1991 .

[24]  Franklin M. Orr,et al.  Storage of Carbon Dioxide in Geologic Formations , 2004 .

[25]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[26]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[27]  Johan A. K. Suykens,et al.  Coupled Simulated Annealing , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[28]  J. Houghton,et al.  Climate change 2001 : the scientific basis , 2001 .

[29]  William A. Wakeham,et al.  Intermolecular Forces: Their Origin and Determination , 1983 .

[30]  Amir H. Mohammadi,et al.  Efficient estimation of natural gas compressibility factor using a rigorous method , 2014 .

[31]  Martin J. Blunt,et al.  Modeling CO2 Storage in Aquifers : Assessing the key contributors to uncertainty , 2009 .

[32]  Wallace S. Broecker,et al.  The Holocene CO2 rise: Anthropogenic or natural? , 2006 .

[33]  Farhad Gharagheizi,et al.  A novel method for evaluation of asphaltene precipitation titration data , 2012 .

[34]  Amin Shokrollahi,et al.  Evolving artificial neural network and imperialist competitive algorithm for prediction oil flow rate of the reservoir , 2013, Appl. Soft Comput..

[35]  W. Wakeham,et al.  The thermal conductivity of argon, carbon dioxide and nitrous oxide , 1987 .

[36]  J. Callaway Model for Lattice Thermal Conductivity at Low Temperatures , 1959 .

[37]  Brian D. Ripley,et al.  Pattern Recognition and Neural Networks , 1996 .

[38]  Guntis Moritis,et al.  New technology, improved economics boost EOR hopes , 1996 .

[39]  J. Sengers,et al.  The thermal conductivity of carbon dioxide in the critical region : II. Measurements and conclusions , 1962 .

[40]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.

[41]  David S. Schechter,et al.  Improved Efficiency of Miscible CO2 Floods and Enhanced Prospects for CO2 Flooding Heterogeneous Reservoirs , 1999 .

[42]  L. A. Guildner THE THERMAL CONDUCTIVITY OF CARBON DIOXIDE IN THE REGION OF THE CRITICAL POINT. , 1958, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Russell T. Johns,et al.  Improved MMP Correlation for CO2 Floods Using Analytical Theory , 2005 .

[44]  E. R. Grilly,et al.  The Thermal Conductivites of Eight Common Gases between 80° and 380°K , 1946 .

[45]  J. Watson,et al.  Thermal conductivity of argon, nitrogen and carbon dioxide at elevated temperatures and pressures , 1986 .

[46]  J. Sengers,et al.  Thermal Conductivity of Carbon Dioxide and Steam in the Supercritical Region , 1973 .

[47]  Jan V. Sengers,et al.  Scaling of the thermal conductivity near the gas-liquid critical point , 1971 .

[48]  Kris Piessens,et al.  Pipeline design for a least-cost router application for CO2 transport in the CO2 sequestration cycle , 2008 .

[49]  Jaime G. Carbonell,et al.  On the parameter optimization of Support Vector Machines for binary classification. , 2012, Journal of integrative bioinformatics.

[50]  Amin Shokrollahi,et al.  State-of-the-Art Least Square Support Vector Machine Application for Accurate Determination of Natural Gas Viscosity , 2014 .

[51]  Mahmood Amani,et al.  Implementation of SVM framework to estimate PVT properties of reservoir oil , 2013 .

[52]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[53]  S. Agatonovic-Kustrin,et al.  Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. , 2000, Journal of pharmaceutical and biomedical analysis.

[54]  Trevor Hughes,et al.  Large-Volume Foam-Gel Treatments to Improve Conformance of the Rangely CO2 Flood , 1999 .

[55]  L. P. Filippov,et al.  Heat Conductivity of Gases and Liquids , 1971 .

[56]  Giovanni Luca Christian Masala,et al.  A comparative study of K-Nearest Neighbour, Support Vector Machine and Multi-Layer Perceptron for Thalassemia screening , 2003 .

[57]  W. Wakeham,et al.  The Thermal Conductivity of Argon, Nitrogen and Carbon Monoxide in the Temperature Range 300 — 430 K at Pressures up to 10 MPa , 1983 .

[58]  J. Watson,et al.  Thermal conductivity of carbon dioxide in the temperature range 300–348 K and pressures up to 25 MPa , 1983 .

[59]  S. Saxena,et al.  Thermal conductivity of carbon dioxide in the temperature range 100°C to 1075°C , 1970 .

[60]  Hailong Li,et al.  PVTxy properties of CO2 mixtures relevant for CO2 capture, transport and storage: Review of available experimental data and theoretical models , 2011 .

[61]  J. Kestin,et al.  Instrument to measure the thermal conductivity of gases , 1974 .

[62]  S. Gunn Support Vector Machines for Classification and Regression , 1998 .

[63]  A Bazzani,et al.  An SVM classifier to separate false signals from microcalcifications in digital mammograms , 2001, Physics in medicine and biology.

[64]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .

[65]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machines , 2002 .

[66]  E. Plinski,et al.  Prediction of the thermal properties of CO2, CO, and Xe laser media , 2001 .

[67]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[68]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[69]  Y. S. Touloukian Thermophysical properties of matter , 1970 .

[70]  J. Gibbins,et al.  Carbon Capture and Storage , 2008 .

[71]  Hailong Li,et al.  Responses to ‘Comments on PVTxy properties of CO2 mixtures relevant for CO2 capture, transport and storage: Review of available experimental data and theoretical models’ , 2012 .

[72]  A. S. Dickinson,et al.  Classical trajectory calculations of diffusion and viscosity for He-N2 mixtures , 1985 .

[73]  Farhad Gharagheizi,et al.  Evaluation of experimental data for wax and diamondoids solubility in gaseous systems , 2012 .

[74]  I. Akervoll,et al.  Modeling Long-Term CO2 Storage in Aquifer With a Black-Oil Reservoir Simulator , 2005 .

[75]  Y. S. Touloukian,et al.  Thermal conductivity: nonmetallic solids , 1970 .

[76]  J. Kestin,et al.  The theory of the transient hot-wire method for measuring thermal conductivity , 1976 .

[77]  Farhad Gharagheizi,et al.  Intelligent model for prediction of CO2 – Reservoir oil minimum miscibility pressure , 2013 .

[78]  Rodney Calvert,et al.  Insights and Methods for 4D Reservoir Monitoring and Characterization , 2005 .

[79]  A. S. Dickinson,et al.  Classical trajectory calculations for anisotropy-dependent cross sections for He-N2 mixtures , 1986 .