An FPGA architecture for solving the Table Maker's Dilemma

Solving the Table Maker's Dilemma, for a given function and a given target floating-point format, requires testing the value of the function, with high precision, at a very large number of consecutive values. We give an algorithm that allows for performing such computations on a very regular architecture, and present an FPGA implementation of that algorithm.

[1]  J. Harrison,et al.  Efficient and accurate computation of upper bounds of approximation errors , 2011, Theor. Comput. Sci..

[2]  J. Muller,et al.  CR-LIBM A library of correctly rounded elementary functions in double-precision , 2006 .

[3]  J. Muller Elementary Functions, Algorithms and Implementation, 2nd Edition , 2006 .

[4]  Jean-Michel Muller,et al.  Worst cases for correct rounding of the elementary functions in double precision , 2001, Proceedings 15th IEEE Symposium on Computer Arithmetic. ARITH-15 2001.

[5]  Vincent Lefèvre,et al.  Worst cases and lattice reduction , 2003, Proceedings 2003 16th IEEE Symposium on Computer Arithmetic.

[6]  Vincent Lefèvre,et al.  Searching worst cases of a one-variable function using lattice reduction , 2005, IEEE Transactions on Computers.

[7]  Jean-Michel Muller,et al.  Elementary Functions: Algorithms and Implementation , 1997 .

[8]  Vincent Lefèvre,et al.  New Results on the Distance between a Segment and Z². Application to the Exact Rounding , 2005, 17th IEEE Symposium on Computer Arithmetic (ARITH'05).

[9]  Vincent Lefèvre,et al.  Worst Cases for the Exponential Function in the IEEE 754r decimal64 Format , 2008, Reliable Implementation of Real Number Algorithms.

[10]  Jean-Michel Muller,et al.  Elementary functions - algorithms and implementation (2. ed.) , 2006 .

[11]  James Demmel,et al.  IEEE Standard for Floating-Point Arithmetic , 2008 .

[12]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[13]  V. Lefèvre,et al.  Moyens arithmetiques pour un calcul fiable , 2000 .