Partial transposition of random states and non-centered semicircular distributions

Let W be a Wishart random matrix of size d^2 times d^2, considered as a block matrix with d times d blocks. Let Y be the matrix obtained by transposing each block of W. We prove that the empirical eigenvalue distribution of Y approaches a non-centered semicircular distribution when d tends to infinity. We also show the convergence of extreme eigenvalues towards the edge of the expected spectrum. The proofs are based on the moments method. This matrix model is relevant to Quantum Information Theory and corresponds to the partial transposition of a random induced state. A natural question is: "When does a random state have a positive partial transpose (PPT)?". We answer this question and exhibit a strong threshold when the parameter from the Wishart distribution equals 4. When d gets large, a random state on C^d tensor C^d obtained after partial tracing a random pure state over some ancilla of dimension alpha.d^2 is typically PPT when alpha>4 and typically non-PPT when alpha<4.

[1]  A. Guionnet,et al.  An Introduction to Random Matrices , 2009 .

[2]  M. Aigner,et al.  Motzkin Numbers , 1998, Eur. J. Comb..

[3]  J. W. Silverstein,et al.  Spectral Analysis of Large Dimensional Random Matrices , 2009 .

[4]  R. Speicher,et al.  Lectures on the Combinatorics of Free Probability: The free commutator , 2006 .

[5]  M. Horodecki,et al.  Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature? , 1998, quant-ph/9801069.

[6]  W. Munro,et al.  Bounds on entanglement in qudit subsystems , 2002, quant-ph/0203037.

[7]  Giuliano Benenti,et al.  Detecting entanglement of random states with an entanglement witness , 2007, 0706.2765.

[8]  Dag Jonsson Some limit theorems for the eigenvalues of a sample covariance matrix , 1982 .

[9]  A. Winter,et al.  Aspects of Generic Entanglement , 2004, quant-ph/0407049.

[10]  S. Geman A Limit Theorem for the Norm of Random Matrices , 1980 .

[11]  M. Horodecki,et al.  Quantum entanglement , 2007, quant-ph/0702225.

[12]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[13]  K. Życzkowski,et al.  Geometry of Quantum States , 2007 .

[14]  Gerard J. Milburn,et al.  Geometry of quantum states: an introduction to quantum entanglement by Ingemar Bengtsson and Karol Zyczkowski , 2006, Quantum Inf. Comput..

[15]  V. Marčenko,et al.  DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .

[16]  Ion Nechita Asymptotics of Random Density Matrices , 2007 .

[17]  Guillaume Aubrun,et al.  Entanglement Thresholds for Random Induced States , 2011, 1106.2264.

[18]  Guillaume Aubrun Sampling convex bodies: a random matrix approach , 2007 .

[19]  Teodor Banica,et al.  Asymptotic Eigenvalue Distributions of Block-Transposed Wishart Matrices , 2011, 1105.2556.

[20]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[21]  M. Ledoux The concentration of measure phenomenon , 2001 .

[22]  H. Sommers,et al.  Induced measures in the space of mixed quantum states , 2000, quant-ph/0012101.

[23]  Guillaume Aubrun,et al.  Tensor products of convex sets and the volume of separable states on N qudits (10 pages) , 2005, quant-ph/0503221.