LBT/LUCIFER OBSERVATIONS OF THE z ∼ 2 LENSED GALAXY J0900+2234

We present rest-frame optical images and spectra of the gravitationally lensed, star-forming galaxy J0900+2234 (z = 2.03). The observations were performed with the newly commissioned LUCIFER1 near-infrared (NIR) instrument mounted on the Large Binocular Telescope. We fitted lens models to the rest-frame optical images and found that the galaxy has an intrinsic effective radius of 7.4 ±  0.8 kpc with a lens magnification factor of about 5 for the A and B components. We also discovered a new arc belonging to another lensed high-z source galaxy, which makes this lens system a potential double Einstein ring system. Using the high signal-to-noise ratio rest-frame spectra covered by the H + K band, we detected Hβ, [O iii], Hα, [N ii], and [S ii] emission lines. Detailed physical properties of this high-z galaxy were derived. The extinction toward the ionized H ii regions (Eg(B − V)) was computed from the flux ratio of Hα and Hβ and appears to be much higher than that toward the stellar continuum (Es(B − V)), derived from the optical and NIR broadband photometry fitting. The metallicity was estimated using N2 and O3N2 indices. It is in the range of solar abundance, which is much lower than for typical z ∼ 2 star-forming galaxies. From the flux ratio of [S ii]λ6717 and [S ii]λ6732, we found that the electron number density of the H ii regions in the high-z galaxy was ≃1000 cm−3, consistent with other z ∼ 2 galaxies but much higher than that in local H ii regions. The star formation rate was estimated via the Hα luminosity, after correction for the lens magnification, to be about 365 ±  69 M☉ yr−1. Combining the FWHM of Hα emission lines and the half-light radius, we found that the dynamical mass of the lensed galaxy is (5.8 ± 0.9) × 1010M☉. The gas mass is (5.1 ± 1.1) × 1010M☉ from the Hα flux surface density using global Kennicutt–Schmidt law, indicating a very high gas fraction of 0.79 ± 0.19 in J0900+2234.

[1]  W. Seifert,et al.  LUCIFER1 commissioning at the LBT , 2010, Astronomical Telescopes + Instrumentation.

[2]  R. Bouwens,et al.  THE EVOLUTION OF THE ULTRAVIOLET LUMINOSITY FUNCTION FROM z ∼ 0.75 TO z ∼ 2.5 USING HST ERS WFC3/UVIS OBSERVATIONS , 2010, 1005.1661.

[3]  F. Mannucci,et al.  A fundamental relation between mass, SFR and metallicity in local and high redshift galaxies , 2010, 1005.0006.

[4]  B. Koester,et al.  TWO LENSED z ≃ 3 LYMAN BREAK GALAXIES DISCOVERED IN THE SDSS GIANT ARCS SURVEY , 2010, 1003.0030.

[5]  Chien Y. Peng,et al.  DETAILED DECOMPOSITION OF GALAXY IMAGES. II. BEYOND AXISYMMETRIC MODELS , 2009, 0912.0731.

[6]  Astronomy,et al.  A study of interstellar gas and stars in the gravitationally lensed galaxy 'the Cosmic Eye' from rest-frame ultraviolet spectroscopy , 2009, 0910.0840.

[7]  European Southern Observatory,et al.  CASSOWARY 20: a wide separation Einstein Cross identified with the X-shooter spectrograph , 2009, Monthly Notices of the Royal Astronomical Society.

[8]  J. Frieman,et al.  THE SLOAN BRIGHT ARCS SURVEY: FOUR STRONGLY LENSED GALAXIES WITH REDSHIFT > 2 , 2009, 0910.4600.

[9]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[10]  M. Pettini,et al.  The ultraviolet spectrum of the gravitationally lensed galaxy ‘the Cosmic Horseshoe’: a close-up of a star-forming galaxy at z∼ 2 , 2009, 0906.2412.

[11]  D. Tucker,et al.  REST-FRAME OPTICAL SPECTRA OF THREE STRONGLY LENSED GALAXIES AT z ∼ 2 , 2009, 0906.2197.

[12]  Marcia J. Rieke,et al.  TURNING BACK THE CLOCK: INFERRING THE HISTORY OF THE EIGHT O'CLOCK ARC , 2009, 0905.1122.

[13]  Shy Genel,et al.  THE SINS SURVEY: SINFONI INTEGRAL FIELD SPECTROSCOPY OF z ∼ 2 STAR-FORMING GALAXIES , 2009, 0903.1872.

[14]  D. Tucker,et al.  THE SLOAN BRIGHT ARCS SURVEY: SIX STRONGLY LENSED GALAXIES AT z = 0.4–1.4 , 2008, 0812.3934.

[15]  W. Sargent,et al.  HIGH-REDSHIFT METALS. I. THE DECLINE OF C iv AT z > 5.3 , 2008, 0812.2856.

[16]  J. Frieman,et al.  DISCOVERY OF A VERY BRIGHT, STRONGLY LENSED z = 2 GALAXY IN THE SDSS DR5 , 2008, 0809.4475.

[17]  Cambridge,et al.  Two new large-separation gravitational lenses from SDSS , 2008, 0806.4188.

[18]  C. Steidel,et al.  A STEEP FAINT-END SLOPE OF THE UV LUMINOSITY FUNCTION AT z ∼ 2–3: IMPLICATIONS FOR THE GLOBAL STELLAR MASS DENSITY AND STAR FORMATION IN LOW-MASS HALOS , 2008, 0810.2788.

[19]  Richard S. Ellis,et al.  A Hubble and Spitzer Space Telescope Survey for Gravitationally Lensed Galaxies: Further Evidence for a Significant Population of Low-Luminosity Galaxies beyond z = 7 , 2008, 0803.4391.

[20]  J. Brinchmann,et al.  Metallicities and Physical Conditions in Star-forming Galaxies at z ~ 1.0-1.5 , 2008, 0801.1670.

[21]  J. Frieman,et al.  The 8 O’Clock Arc: A Serendipitous Discovery of a Strongly Lensed Lyman Break Galaxy in the SDSS DR4 Imaging Data , 2006, astro-ph/0611138.

[22]  A. M. Swinbank,et al.  A Very Bright, Highly Magnified Lyman Break Galaxy at z = 3.07 , 2006, astro-ph/0611486.

[23]  C. Steidel,et al.  Hα Observations of a Large Sample of Galaxies at z ~ 2: Implications for Star Formation in High-Redshift Galaxies , 2006, astro-ph/0604388.

[24]  C. Steidel,et al.  The Stellar, Gas, and Dynamical Masses of Star-forming Galaxies at z ~ 2 , 2006, astro-ph/0604041.

[25]  J. Lehár,et al.  Probing the Coevolution of Supermassive Black Holes and Galaxies Using Gravitationally Lensed Quasar Hosts , 2006, astro-ph/0603248.

[26]  C. Steidel,et al.  The Mass-Metallicity Relation at z≳2 , 2006, astro-ph/0602473.

[27]  Carlos E. C. J. Gabriel,et al.  Astronomical Data Analysis Software and Systems Xv , 2022 .

[28]  Jia-Sheng Huang,et al.  Ultraviolet to Mid-Infrared Observations of Star-forming Galaxies at z ~ 2: Stellar Masses and Stellar Populations , 2005, astro-ph/0503485.

[29]  T. Treu,et al.  A Systematic Search for Gravitationally Lensed Arcs in the Hubble Space Telescope WFPC2 Archive , 2005, astro-ph/0502528.

[30]  M. Pettini,et al.  [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.

[31]  Timothy M. Heckman,et al.  The host galaxies of active galactic nuclei , 2003 .

[32]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[33]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[34]  J. Brinkmann,et al.  The Host Galaxies of AGN , 2003, astro-ph/0304239.

[35]  J. Cuby,et al.  Hα Spectroscopy of Galaxies at z > 2: Kinematics and Star Formation , 2003, astro-ph/0303392.

[36]  Henry C. Ferguson,et al.  The Evolution of the Global Stellar Mass Density at 0 < z < 3 , 2002, astro-ph/0212242.

[37]  L. Ho,et al.  Detailed Structural Decomposition of Galaxy Images , 2002, astro-ph/0204182.

[38]  Cambridge,et al.  New Light on the Search for Low-Metallicity Galaxies , 2001, astro-ph/0110356.

[39]  L. Kewley,et al.  Theoretical Modeling of Starburst Galaxies , 2001, astro-ph/0106324.

[40]  J. Cuby,et al.  The Rest-Frame Optical Spectra of Lyman Break Galaxies: Star Formation, Extinction, Abundances, and Kinematics , 2001, astro-ph/0102456.

[41]  B. Koo,et al.  Radio Continuum and Recombination Line Study of Ultracompact H II Regions with Extended Envelopes , 2000, astro-ph/0010535.

[42]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[43]  H. Schmitt,et al.  Gas properties of H ii and starburst galaxies: relation with the stellar population , 2000, astro-ph/0004160.

[44]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[45]  R. Nichol,et al.  High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data , 1999, astro-ph/0103228.

[46]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[47]  L. Pozzetti,et al.  The Star Formation History of Field Galaxies , 1997, astro-ph/9708220.

[48]  E. Ellingson,et al.  Hα Imaging of the Candidate Protogalaxy MS 1512–cB58 , 1997 .

[49]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[50]  R. Carlberg,et al.  A Proto-Galaxy Candidate at Z = 2.7 , 1996, astro-ph/9602121.

[51]  A. Kinney,et al.  Ultraviolet to near-infrared spectral distributions of star-forming galaxies: Metallicity and age effects , 1994 .

[52]  J. Huchra,et al.  H II regions and the abundance properties of spiral galaxies , 1994 .

[53]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[54]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[55]  J. Baldwin,et al.  ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .