A short exposition of the Patak-Tancer theorem on non-embeddability of k-complexes in 2k-manifolds

In 2019 P. Patak and M. Tancer obtained the following higher-dimensional generalization of the Heawood inequality on embeddings of graphs into surfaces. We expose this result in a short well-structured way accessible to non-specialists in the field. Let ∆n be the union of k-dimensional faces of the n-dimensional simplex. Theorem. (a) If ∆n PL embeds into the connected sum of g copies of the Cartesian product S × S of two k-dimensional spheres, then g ≥ n− 2k

[1]  A. Skopenkov Surveys in Contemporary Mathematics: Embedding and knotting of manifolds in Euclidean spaces , 2006, math/0604045.

[2]  Jack Segal,et al.  Quasi embeddings and embeddings of polyhedra in Rm , 1992 .

[3]  Isabella Novik,et al.  Upper bound theorems for homology manifolds , 1998 .

[4]  Byonghyo Shim,et al.  Low-Rank Matrix Completion: A Contemporary Survey , 2019, IEEE Access.

[5]  R. Karasev,et al.  Some 'converses' to intrinsic linking theorems , 2020, ArXiv.

[6]  Jan Kyncl,et al.  Z_2-genus of graphs and minimum rank of partial symmetric matrices , 2019, SoCG.

[7]  Kouki Taniyama,et al.  Higher dimensional links in a simplicial complex embedded in a sphere , 2000 .

[8]  A. Skopenkov,et al.  A user's guide to the topological Tverberg conjecture , 2016, 1605.05141.

[9]  Mikhail Skopenkov,et al.  Embedding products of graphs into Euclidean spaces , 2008, 0808.1199.

[10]  J. Milnor,et al.  On the parallelizability of the spheres , 1958 .

[11]  E. Sparla A Proof of KÜhnel’s Conjecture for n ⩾ k2 + 3k Eric Sparla , 1997 .

[12]  A. Skopenkov,et al.  A short exposition of S. Parsa's theorem on intrinsic linking and non-realizability , 2018, ArXiv.

[13]  Alexander Schrijver,et al.  A Borsuk theorem for antipodal links and a spectral characterization of linklessly embeddable graphs , 1998 .

[14]  Martin Tancer,et al.  Hardness of almost embedding simplicial complexes in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$ , 2018, Discrete & Computational Geometry.

[15]  Martin Tancer,et al.  Embeddings of k-complexes into 2k-manifolds , 2019, Discret. Comput. Geom..

[16]  A. Skopenkov,et al.  Algebraic topology from geometric viewpoint , 2008, 0808.1395.