Pencil Back-Projection Method for SAR Imaging

We present a high-resolution method for spotlight mode SAR imaging that utilizes parametric modeling of projected target reflectivity density function and tomographic reconstruction. The method requires no polar-to-cartesian interpolation in spectral domain. Utilization of forward-backward total least squares bandpass matrix pencil method allows super resolution to be achieved in range for a single imaging angle. Hence, the quality of the image reconstructed by convolution back-projection is also improved. It is shown that the method is very resistant to noise and can generate images down to very low SNR values. Direct formulation in terms of physical quantities such as electric field and current density is another contribution of this paper.

[1]  Shu Xiao,et al.  An N2logN back-projection algorithm for SAR image formation , 2000, Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154).

[2]  D. Mensa High Resolution Radar Cross-Section Imaging , 1991 .

[3]  Charles V. Jakowatz,et al.  Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach , 1996 .

[4]  F. Hu The band-pass matrix pencil method for parameter estimation of exponentially damped/undamped sinusoidal signals in noise , 1990 .

[5]  Tapan K. Sarkar,et al.  Utilization of Bandpass Filtering for the Matrix Pencil Method , 1993, IEEE Trans. Signal Process..

[6]  E. Michielssen,et al.  Fast Evaluation of Three-Dimensional Transient Wave Fields Using Diagonal Translation Operators , 1998 .

[7]  Jinhwan Koh,et al.  Utilization of a unitary transform for efficient computation in the matrix pencil method to find the direction of arrival , 2006, IEEE Transactions on Antennas and Propagation.

[8]  G. Duff,et al.  Distortion in the inverse synthetic aperture radar (ISAR) images of a target with time-varying perturbed motion , 2003 .

[9]  John J. Knab,et al.  Interpolation of band-limited functions using the approximate prolate series (Corresp.) , 1979, IEEE Trans. Inf. Theory.

[10]  Yoram Bresler,et al.  O(N2log2N) filtered backprojection reconstruction algorithm for tomography , 2000, IEEE Trans. Image Process..

[11]  S. Deans The Radon Transform and Some of Its Applications , 1983 .

[12]  Tapan K. Sarkar,et al.  A perturbation property of the TLS-LP method , 1990, IEEE Trans. Acoust. Speech Signal Process..

[14]  G. Duff,et al.  Distortion in ISAR Imaging and Restoration of Distorted ISAR Images , 2003 .

[15]  Russell M. Mersereau Recovering multidimensional signals from their projections , 1973, Comput. Graph. Image Process..

[16]  H. Ling,et al.  Image domain ray tube integration formula for the shooting and bouncing ray technique , 1995 .

[17]  R. M. Mersereau,et al.  Digital reconstruction of multidimensional signals from their projections , 1974 .

[18]  A. Lazarov Iterative MMSE method and recurrent Kalman procedure for ISAR image reconstruction , 2001 .

[19]  W. Kenneth Jenkins,et al.  Convolution backprojection image reconstruction for spotlight mode synthetic aperture radar , 1992, IEEE Trans. Image Process..

[20]  T. Sarkar,et al.  Using the matrix pencil method to estimate the parameters of a sum of complex exponentials , 1995 .

[21]  D. Slepian,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .

[22]  J.L.C. Sanz,et al.  Image reconstruction from frequency-offset Fourier data , 1984, Proceedings of the IEEE.

[23]  Jack Walker,et al.  Range-Doppler Imaging of Rotating Objects , 1980, IEEE Transactions on Aerospace and Electronic Systems.

[24]  David C. Munson,et al.  A signal processing view of strip-mapping synthetic aperture radar , 1989, IEEE Trans. Acoust. Speech Signal Process..

[25]  Yingbo Hua,et al.  On techniques for estimating parameters of exponentially damped/undamped sinusoids in noise , 1988 .

[26]  Stuart R. DeGraaf,et al.  SAR imaging via modern 2-D spectral estimation methods , 1998, IEEE Trans. Image Process..

[27]  Tapan K. Sarkar,et al.  On SVD for estimating generalized eigenvalues of singular matrix pencil in noise , 1991, IEEE Trans. Signal Process..

[28]  Yingbo Hua,et al.  Imaging of point scatterers from step-frequency ISAR data , 1993 .

[29]  M. Glas,et al.  Principles of Computerized Tomographic Imaging , 2000 .

[30]  Yingbo Hua,et al.  Matrix pencil methods for ISAR image reconstruction , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[31]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[32]  F. Harris On the use of windows for harmonic analysis with the discrete Fourier transform , 1978, Proceedings of the IEEE.

[33]  Yoram Bresler,et al.  An Back-Projection Algorithm for SAR Image Formation , 2000 .

[34]  Tapan K. Sarkar,et al.  On the total least squares linear prediction method for frequency estimation , 1990, IEEE Trans. Acoust. Speech Signal Process..

[35]  G. Duff,et al.  Experimental Investigations on the Distortion of ISAR Images Using Different Radar Waveforms , 2003 .

[36]  Tapan K. Sarkar,et al.  Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise , 1990, IEEE Trans. Acoust. Speech Signal Process..

[37]  D. Munson,et al.  A tomographic formulation of spotlight-mode synthetic aperture radar , 1983, Proceedings of the IEEE.

[38]  Y. Hua,et al.  Generalized pencil-of-function method for extracting poles of an EM system from its transient response , 1989 .