Brillouin integrated photonics

A recent renaissance in Brillouin scattering research has been driven by the increasing maturity of photonic integration platforms and nanophotonics. The result is a new breed of chip-based devices that exploit acousto-optic interactions to create lasers, amplifiers, filters, delay lines and isolators. Here, we provide a detailed overview of Brillouin scattering in integrated waveguides and resonators, covering key concepts such as the stimulation of the Brillouin process, in which the optical field itself induces acoustic vibrations, the importance of acoustic confinement, methods for calculating and measuring Brillouin gain, and the diversity of materials platforms and geometries. Our Review emphasizes emerging applications in microwave photonics, signal processing and sensing, and concludes with a perspective for future directions. Acousto-optical interactions within integrated optics platforms are reviewed with a discussion of the useful chip-based devices such as lasers, amplifiers, filters, isolators and more besides that can result.

[1]  Kwanil Lee,et al.  Tunable optical delays based on Brillouin dynamic grating in optical fibers. , 2009, Optics express.

[2]  L. Brillouin Diffusion de la lumière et des rayons X par un corps transparent homogène - Influence de l'agitation thermique , 1922 .

[3]  Peter T. Rakich,et al.  Non-reciprocal interband Brillouin modulation , 2018, Nature Photonics.

[4]  B. Y. Kim,et al.  All-fiber-optic nonreciprocal modulator. , 1997, Optics letters.

[5]  Peter T. Rakich,et al.  RF-Photonic Filters via On-Chip Photonic–Phononic Emit–Receive Operations , 2017, Journal of Lightwave Technology.

[6]  X. Bao,et al.  32-km distributed temperature sensor based on Brillouin loss in an optical fiber. , 1993, Optics letters.

[7]  Luc Thévenaz,et al.  Distributed forward Brillouin sensor based on local light phase recovery , 2018, Nature Communications.

[8]  C. Poulton,et al.  Impact of nonlinear loss on stimulated Brillouin scattering , 2015, 1505.02517.

[9]  Moritz Merklein,et al.  A chip-integrated coherent photonic-phononic memory , 2016, Nature Communications.

[10]  D. Marpaung,et al.  High link performance of Brillouin-loss based microwave bandpass photonic filters , 2018, OSA Continuum.

[11]  Luc Thévenaz,et al.  All-optical signal processing using dynamic Brillouin gratings , 2013, Scientific Reports.

[12]  Richard K. Chang,et al.  Generation and suppression of stimulated Brillouin scattering in single liquid droplets , 1989 .

[13]  B. Eggleton,et al.  Brillouin-based light storage and delay techniques , 2018, Journal of Optics.

[14]  Superfluid Brillouin optomechanics , 2016, 1602.05640.

[15]  Yang Liu,et al.  Chip-based Brillouin radio frequency photonic phase shifter and wideband time delay. , 2017, Optics letters.

[16]  P. Rakich,et al.  Noise and dynamics in forward Brillouin interactions , 2015, 1512.07606.

[17]  A. Minardo,et al.  Bridge Monitoring Using Brillouin Fiber-Optic Sensors , 2012, IEEE Sensors Journal.

[18]  P. Rakich,et al.  Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides , 2013, Nature communications.

[19]  Robert A. Minasian,et al.  Photonic signal processing of microwave signals , 2006 .

[20]  R. Stolen,et al.  Stimulated Brillouin scattering in optical fibers , 1972 .

[21]  J. Haigh,et al.  Triple-Resonant Brillouin Light Scattering in Magneto-Optical Cavities. , 2016, Physical review letters.

[22]  Gaurav Bahl,et al.  Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits , 2017, 1707.04276.

[23]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[24]  Zongfu Yu,et al.  Realizing effective magnetic field for photons by controlling the phase of dynamic modulation , 2012, Nature Photonics.

[25]  Lawrence Kuhn,et al.  Optical Guided Wave Mode Conversion by an Acoustic Surface Wave , 1971 .

[26]  Yin-Chung Chen,et al.  Brillouin cooling in a linear waveguide , 2016, 1602.00205.

[27]  M. Piqueras,et al.  Tunable and reconfigurable photonic microwave filter based on stimulated Brillouin scattering. , 2007, Optics letters.

[28]  Benjamin J. Eggleton,et al.  On-chip stimulated Brillouin scattering , 2010, CLEO: 2011 - Laser Science to Photonic Applications.

[29]  Sasan Fathpour,et al.  Fully tensorial elastic-wave mode solver for stimulated Brillouin scattering simulations in integrated photonics , 2019, OPTO.

[30]  R. S. Krishnan,et al.  Thermal scattering of light in crystals , 1950 .

[31]  J. Ballato,et al.  Brillouin spectroscopy of YAG-derived optical fibers. , 2010, Optics express.

[32]  C. Townes,et al.  STIMULATED BRILLOUIN SCATTERING IN LIQUIDS1 , 1964 .

[33]  K. Vahala,et al.  Dual-microcavity narrow-linewidth Brillouin laser , 2014, 1410.2912.

[34]  V. Laude,et al.  Lagrangian description of Brillouin scattering and electrostriction in nanoscale optical waveguides , 2015 .

[35]  L. Thévenaz,et al.  Brillouin gain spectrum characterization in single-mode optical fibers , 1997 .

[36]  Bart Kuyken,et al.  Net on-chip Brillouin gain based on suspended silicon nanowires , 2015, 1508.06318.

[37]  Benjamin J Eggleton,et al.  Widely tunable, low phase noise microwave source based on a photonic chip. , 2016, Optics letters.

[38]  Mario F. S. Ferreira,et al.  Analysis of the gain and noise characteristics of fibre Brillouin amplifiers , 1994 .

[39]  B. Ortega,et al.  A tutorial on microwave photonic filters , 2006, Journal of Lightwave Technology.

[40]  Thomas Schneider,et al.  Sharp tunable and additional noise-free optical filter based on Brillouin losses , 2018 .

[41]  Jacob M. Taylor,et al.  Dynamically induced robust phonon transport and chiral cooling in an optomechanical system , 2016, Nature Communications.

[42]  R. A. Minasian,et al.  Widely Tunable Single-Passband Microwave Photonic Filter Based on Stimulated Brillouin Scattering , 2011, IEEE Photonics Technology Letters.

[43]  M. Facchini,et al.  Distributed sensing using stimulated Brillouin scattering : towards ultimate resolution , 1997 .

[44]  Blair Morrison,et al.  Finite Element Analysis of Stimulated Brillouin Scattering in Integrated Photonic Waveguides , 2019, Journal of Lightwave Technology.

[45]  Jacob Scheuer Fiber microcoil optical gyroscope , 2009 .

[46]  P. Russell,et al.  All-optical control of gigahertz acoustic resonances by forward stimulated interpolarization scattering in a photonic crystal fiber. , 2010, Physical review letters.

[47]  J. E. Sipe,et al.  A Hamiltonian treatment of stimulated Brillouin scattering in nanoscale integrated waveguides , 2015, 1509.01017.

[48]  Sébastien Le Floch,et al.  Theoretical evaluation of the Brillouin threshold and the steady-state Brillouin equations in standard single-mode optical fibers. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[49]  Kerry J. Vahala,et al.  Chemically etched ultrahigh-Q wedge-resonator on a silicon chip , 2012, Nature Photonics.

[50]  R. Baets,et al.  Controlling phonons and photons at the wavelength scale: integrated photonics meets integrated phononics , 2018, Optica.

[51]  R. Soref,et al.  Germanium as a material for stimulated Brillouin scattering in the mid-infrared. , 2014, Optics express.

[52]  M D Pelusi,et al.  Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration. , 2007, Optics express.

[53]  Roel Baets,et al.  Unifying Brillouin scattering and cavity optomechanics , 2015, 1503.03044.

[54]  E. Gross Change of Wave-length of Light due to Elastic Heat Waves at Scattering in Liquids. , 1930, Nature.

[55]  Gaurav Bahl,et al.  Non-reciprocal Brillouin scattering induced transparency , 2014, Nature Physics.

[56]  K. Vahala,et al.  Microwave synthesizer using an on-chip Brillouin oscillator , 2013, Nature Communications.

[57]  Lianshan Yan,et al.  Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter , 2016 .

[58]  A. Adibi,et al.  Raman-like stimulated Brillouin scattering in phononic-crystal-assisted silicon-nitride waveguides , 2017 .

[59]  K. Vahala,et al.  Characterization of a high coherence, Brillouin microcavity laser on silicon. , 2012, Optics express.

[60]  C. Poulton,et al.  Formal selection rules for Brillouin scattering in integrated waveguides and structured fibers. , 2014, Optics express.

[61]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[62]  R. Brewer,et al.  Stimulated Brillouin Scattering in Liquids , 1964 .

[63]  Yang Liu,et al.  Brillouin spectroscopy of a hybrid silicon-chalcogenide waveguide with geometrical variations. , 2018, Optics letters.

[64]  C. Poulton,et al.  Metamaterial control of stimulated Brillouin scattering. , 2016, Optics letters.

[65]  P. Rakich,et al.  A silicon Brillouin laser , 2017, Science.

[66]  Moritz Merklein,et al.  Highly localized distributed Brillouin scattering response in a photonic integrated circuit , 2018 .

[67]  Zongfu Yu,et al.  What is — and what is not — an optical isolator , 2013, Nature Photonics.

[68]  Peter T. Rakich,et al.  Control of coherent information via on-chip photonic–phononic emitter–receivers , 2015, Nature communications.

[69]  B. Eggleton,et al.  Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits , 2013 .

[70]  B. Eggleton,et al.  Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering. , 2012, Optics express.

[71]  A. V. Nazarkin,et al.  Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators , 2009 .

[72]  Elias Giacoumidis,et al.  Chip-based Brillouin processing for carrier recovery in self-coherent optical communications , 2017, Optica.

[73]  Z. Ren,et al.  Stimulated Brillouin scattering induced all-optical modulation in graphene microfiber , 2018, Photonics Research.

[74]  Yang Peng,et al.  Improved dual-wavelength-pumped supercontinuum generation in an all-fiber device , 2010, SPIE/OSA/IEEE Asia Communications and Photonics.

[75]  B. Eggleton,et al.  Design for broadband on-chip isolator using Stimulated Brillouin Scattering in dispersion-engineered chalcogenide waveguides. , 2012, Optics express.

[76]  Shanhui Fan,et al.  Near-complete violation of detailed balance in thermal radiation , 2014 .

[77]  J. Leuthold,et al.  Nonlinear silicon photonics , 2010 .

[78]  Derek Mead,et al.  Fiber optic gyro development at Honeywell , 2016, SPIE Commercial + Scientific Sensing and Imaging.

[79]  G. Bahl,et al.  Giant gain enhancement in surface‐confined resonant Stimulated Brillouin Scattering , 2015, 1506.01720.

[80]  M. Sauer,et al.  Stimulated Brillouin scattering in optical fibers , 2010 .

[81]  L. Thévenaz Brillouin distributed time-domain sensing in optical fibers: state of the art and perspectives , 2010 .

[82]  L. Thévenaz,et al.  Simple distributed fiber sensor based on Brillouin gain spectrum analysis. , 1996, Optics letters.

[83]  A.J. Seeds,et al.  Microwave Photonics , 2006, Journal of Lightwave Technology.

[84]  Lute Maleki,et al.  Brillouin lasing with a CaF2 whispering gallery mode resonator. , 2008, Physical review letters.

[85]  Benjamin J Eggleton,et al.  Narrow linewidth Brillouin laser based on chalcogenide photonic chip. , 2013, Optics letters.

[86]  R. S. Krishnan The scattering of light in fused quartz and its Raman spectrum , 1953 .

[87]  P. Rakich,et al.  On-chip inter-modal Brillouin scattering , 2016, Nature Communications.

[88]  E. Garmire Perspectives on stimulated Brillouin scattering , 2017 .

[89]  K. Vahala Optical microcavities : Photonic technologies , 2003 .

[90]  B. Eggleton,et al.  Photonic chip based tunable slow and fast light via stimulated Brillouin scattering , 2012, CLEO 2012.

[91]  T. Horiguchi,et al.  Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers. , 1990, Optics letters.

[92]  David Marpaung,et al.  On‐chip stimulated Brillouin Scattering for microwave signal processing and generation , 2014 .

[93]  R. S. Krishnan Thermal Scattering of Light in Diamond , 1947, Nature.

[94]  Yosef London,et al.  Optomechanical time-domain reflectometry , 2018, Nature Communications.

[95]  Moritz Merklein,et al.  Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits , 2015, Nature communications.

[96]  Tal Carmon,et al.  Stimulated optomechanical excitation of surface acoustic waves in a microdevice. , 2011, Nature communications.

[97]  Kenneth O. Hill,et al.  cw Brillouin laser , 1976 .

[98]  A. Schweinsberg,et al.  Tunable all-optical delays via Brillouin slow light in an optical fiber , 2005, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[99]  Kerry J. Vahala,et al.  Phonon laser action in a tunable, two-level system , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[100]  Thibaut Sylvestre,et al.  Guided acoustic wave Brillouin scattering in photonic crystal fibers. , 2007, Optics letters.

[101]  Shanhui Fan,et al.  Complete All-Optical Silica Fiber Isolator via Stimulated Brillouin Scattering , 2011, Journal of Lightwave Technology.

[102]  Heming Wang,et al.  Bridging ultrahigh-Q devices and photonic circuits , 2017, Nature Photonics.

[103]  Y.Liu,et al.  Compact Brillouin devices through hybrid integration on silicon , 2017, 1702.05233.

[104]  Yang Liu,et al.  Chip-Based Brillouin Processing for Phase Control of RF Signals , 2018, IEEE Journal of Quantum Electronics.

[105]  K. Vahala,et al.  Microresonator Brillouin gyroscope , 2017 .

[106]  V. Laude,et al.  Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres , 2006 .

[107]  José Capmany,et al.  Microwave photonics combines two worlds , 2007 .

[108]  Peter T. Rakich,et al.  Giant enhancement of stimulated Brillouin scattering in the sub-wavelength limit , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[109]  Ivana Gasulla,et al.  Dynamic Microwave Photonic Filter Using Separate Carrier Tuning Based on Stimulated Brillouin Scattering in Fibers , 2010, IEEE Photonics Technology Letters.

[110]  Tal Carmon,et al.  Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates. , 2009, Physical review letters.

[111]  Gaurav Bahl,et al.  Complete linear optical isolation at the microscale with ultralow loss , 2017, Scientific Reports.

[112]  M. Soljačić,et al.  Stimulated Brillouin scattering in nanoscale silicon step-index waveguides: a general framework of selection rules and calculating SBS gain. , 2012, Optics express.

[113]  Alexis Debut,et al.  Linewidth narrowing in Brillouin lasers: Theoretical analysis , 2000 .

[114]  John E. Bowers,et al.  Interferometric Optical Gyroscope Based on an Integrated Si3N4 Low-Loss Waveguide Coil , 2018, Journal of Lightwave Technology.

[115]  Kazuo Hotate,et al.  Measurement of Brillouin Gain Spectrum Distribution along an Optical Fiber Using a Correlation-Based Technique : Proposal, Experiment and Simulation (Special Issue on Optical Fiber Sensors) , 2000 .

[116]  David Marpaung,et al.  Nonlinear integrated microwave photonics , 2013, 2013 IEEE International Topical Meeting on Microwave Photonics (MWP).

[117]  Zhaoming Zhu,et al.  Stored Light in an Optical Fiber via Stimulated Brillouin Scattering , 2007, Science.

[118]  P. W. East Fifty years of instantaneous frequency measurement , 2012 .

[119]  K. Vahala,et al.  Low-noise Brillouin laser on a chip at 1064 nm. , 2014, Optics letters.

[120]  D. Marpaung,et al.  Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity , 2014, 1412.4236.

[121]  P. Rakich,et al.  Scaling of optical forces in dielectric waveguides: rigorous connection between radiation pressure and dispersion. , 2011, Optics letters.

[122]  Thach G. Nguyen,et al.  On-chip correlation-based Brillouin sensing: design, experiment, and simulation , 2018, Journal of the Optical Society of America B.

[123]  Raphaël Van Laer,et al.  Interaction between light and highly confined hypersound in a silicon photonic nanowire , 2014, Nature Photonics.

[124]  Guang-Can Guo,et al.  Brillouin-scattering-induced transparency and non-reciprocal light storage , 2014, Nature Communications.

[125]  A. Butsch,et al.  Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre , 2011 .

[126]  Grant M. Brodnik,et al.  Sub-hertz fundamental linewidth photonic integrated Brillouin laser , 2018, Nature Photonics.

[127]  V. Chandrasekharan,et al.  Thermal scattering of light in crystals , 1951 .

[128]  A. Adibi,et al.  Observation of stimulated Brillouin scattering in Si3N4 waveguides , 2017, 2017 IEEE Photonics Conference (IPC).

[129]  R. Pant,et al.  Acoustic confinement and stimulated Brillouin scattering in integrated optical waveguides , 2013, 1308.0382.

[130]  K. Vahala Optical microcavities , 2003, Nature.

[131]  C. Cordeiro,et al.  Brillouin scattering self-cancellation , 2016, Nature Communications.

[132]  C. Townes,et al.  Stimulated Brillouin Scattering and Coherent Generation of Intense Hypersonic Waves , 1964 .

[133]  Andrea Fiore,et al.  Nano-opto-electro-mechanical systems , 2018, Nature Nanotechnology.

[134]  G. Agrawal Highly Nonlinear Fibers , 2013 .

[135]  Jianping Yao,et al.  Integrated microwave photonics , 2012, 1211.4114.

[136]  T. Carmon,et al.  Observation of spontaneous Brillouin cooling , 2011, Nature Physics.

[137]  R. Soref,et al.  Stimulated Brillouin Scattering in an AlGaN Photonics Platform Operating in the Visible Spectral Range , 2018, Scientific Reports.

[138]  Yang Liu,et al.  Advanced Integrated Microwave Signal Processing With Giant On-Chip Brillouin Gain , 2017, Journal of Lightwave Technology.

[139]  S. P. Smith,et al.  Narrow-linewidth stimulated Brillouin fiber laser and applications. , 1991, Optics letters.

[140]  David Marpaung,et al.  Tailoring of the Brillouin gain for on-chip widely tunable and reconfigurable broadband microwave photonic filters. , 2016, Optics letters.

[141]  Masato Kishi,et al.  Measurement of Brillouin frequency shift distribution in PLC by Brillouin optical correlation domain analysis , 2012, Other Conferences.

[142]  B. Morrison,et al.  NumBAT: The integrated, open source Numerical Brillouin Analysis Tool , 2018, 1811.10219.

[143]  C. Poulton,et al.  Stimulated Brillouin Scattering in integrated photonic waveguides: forces, scattering mechanisms and coupled mode analysis , 2014, 1407.3521.

[144]  Peter T. Rakich,et al.  Large Brillouin amplification in silicon , 2015, Nature Photonics.

[145]  V. Chandrasekharan Thermal scattering of light in crystals , 1950 .

[146]  Ronny Henker,et al.  Quasi-Light-Storage based on time-frequency coherence. , 2009, Optics express.

[147]  Fernando P. Guiomar,et al.  Experimental demonstration of a frequency-domain Volterra series nonlinear equalizer in polarization-multiplexed transmission , 2012, 2012 38th European Conference and Exhibition on Optical Communications.

[148]  Takashi Inoue,et al.  On-chip Brillouin purification for frequency comb-based coherent optical communications. , 2017, Optics letters.

[149]  J. R. Koehler,et al.  Optomechanical nonlinearity in dual-nanoweb structure suspended inside capillary fiber. , 2012, Physical review letters.

[150]  C. C. Wang,et al.  Nonlinear optics. , 1966, Applied optics.

[151]  R. E. Slusher,et al.  Optical delay lines based on optical filters , 2001 .

[152]  Weisheng Hu,et al.  Brillouin Rectangular Optical Filter With Improved Selectivity and Noise Performance , 2015, IEEE Photonics Technology Letters.