Group Symmetry in Interior-Point Methods for Semidefinite Program

A class of group symmetric Semi-Definite Program (SDP) is introduced by using the framework of group representation theory. It is proved that the central path and several search directions of primal-dual interior-point methods are group symmetric. Preservation of group symmetry along the search direction theoretically guarantees that the numerically obtained optimal solution is group symmetric. As an illustrative example, we show that the optimization problem of a symmetric truss under frequency constraints can be formulated as a group symmetric SDP. Numerical experiments using an interior-point algorithm demonstrate convergence to strictly group symmetric solutions.

[1]  W. Miller Symmetry groups and their applications , 1972 .

[2]  Kyung K. Choi,et al.  Systematic occurrence of repeated eigenvalues in structural optimization , 1982 .

[3]  M. Kojima,et al.  A primal-dual interior point algorithm for linear programming , 1988 .

[4]  Uri Kirsch,et al.  Optimal topologies of truss structures , 1989 .

[5]  George I. N. Rozvany,et al.  Structural Design via Optimality Criteria , 1989 .

[6]  N. Megiddo Pathways to the optimal set in linear programming , 1989 .

[7]  Uri Kirsch,et al.  Optimal Topologies of Structures , 1989 .

[8]  Critical imperfection of symmetric structures , 1991 .

[9]  Kazuo Murota,et al.  Computational Use of Group Theory in Bifurcation Analysis of Symmetric Structures , 1991, SIAM J. Sci. Comput..

[10]  Ikeda Kiyohiro,et al.  Bifurcation hierarchy of symmetric structures , 1991 .

[11]  B. H. V. Topping Mathematical Programming Techniques for Shape Optimization of Skeletal Structures , 1992 .

[12]  Sanjay Mehrotra,et al.  On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..

[13]  Makoto Ohsaki,et al.  A natural generator of optimum topology of plane trusses for specified fundamental frequency , 1992 .

[14]  Kazuo Murota,et al.  On random imperfections for structures of regular-polygonal symmetry , 1992 .

[15]  Martin P. Bendsøe,et al.  A New Method for Optimal Truss Topology Design , 1993, SIAM J. Optim..

[16]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[17]  M. Bendsøe,et al.  Optimization methods for truss geometry and topology design , 1994 .

[18]  N. Olhoff,et al.  Multiple eigenvalues in structural optimization problems , 1994 .

[19]  M. Ohsaki Genetic algorithm for topology optimization of trusses , 1995 .

[20]  Masakazu Kojima,et al.  SDPA (SemiDefinite Programming Algorithm) User's Manual Version 6.2.0 , 1995 .

[21]  Shuzhong Zhang,et al.  Symmetric primal-dual path-following algorithms for semidefinite programming , 1999 .

[22]  Alexander Shapiro,et al.  On Eigenvalue Optimization , 1995, SIAM J. Optim..

[23]  P. Hajela,et al.  Genetic algorithms in truss topological optimization , 1995 .

[24]  Robert J. Vanderbei,et al.  An Interior-Point Method for Semidefinite Programming , 1996, SIAM J. Optim..

[25]  G. I. N. Rozvany,et al.  Difficulties in truss topology optimization with stress, local buckling and system stability constraints , 1996 .

[26]  Asad I. Khan,et al.  Topological design of truss structures using simulated annealing , 1996 .

[27]  M. Zhou,et al.  Difficulties in truss topology optimization with stress and local buckling constraints , 1996 .

[28]  Michael J. Todd,et al.  Self-Scaled Barriers and Interior-Point Methods for Convex Programming , 1997, Math. Oper. Res..

[29]  Claude Fleury,et al.  A primal-dual approach in truss topology optimization , 1997 .

[30]  Renato D. C. Monteiro,et al.  Primal-Dual Path-Following Algorithms for Semidefinite Programming , 1997, SIAM J. Optim..

[31]  Masakazu Kojima,et al.  Exploiting sparsity in primal-dual interior-point methods for semidefinite programming , 1997, Math. Program..

[32]  Peter A. Beling,et al.  Combinatorial complexity of the central curve , 1997, STOC '97.

[33]  Shinji Hara,et al.  Interior-Point Methods for the Monotone Semidefinite Linear Complementarity Problem in Symmetric Matrices , 1997, SIAM J. Optim..

[34]  Michael L. Overton,et al.  Primal-Dual Interior-Point Methods for Semidefinite Programming: Convergence Rates, Stability and Numerical Results , 1998, SIAM J. Optim..

[35]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[36]  Florian Jarre,et al.  Optimal Truss Design by Interior-Point Methods , 1998, SIAM J. Optim..

[37]  Katya Scheinberg,et al.  Interior Point Trajectories in Semidefinite Programming , 1998, SIAM J. Optim..

[38]  Yin Zhang,et al.  A unified analysis for a class of long-step primal-dual path-following interior-point algorithms for semidefinite programming , 1998, Math. Program..

[39]  Kim-Chuan Toh,et al.  On the Nesterov-Todd Direction in Semidefinite Programming , 1998, SIAM J. Optim..

[40]  M. Kojima,et al.  A note on the Nesterov-Todd and the Kojima-Shindoh-hara search directions in semidefinite programming , 1999 .

[41]  Margaréta Halická,et al.  Analytical properties of the central path at boundary point in linear programming , 1999, Math. Program..

[42]  N. Katoh,et al.  Semi-definite programming for topology optimization of trusses under multiple eigenvalue constraints , 1999 .

[43]  Makoto Ohsaki,et al.  Optimization of geometrically non-linear symmetric systems with coincident critical points , 2000 .

[44]  Masakazu Kojima,et al.  Discretization and localization in successive convex relaxation methods for nonconvex quadratic optimization , 2000, Math. Program..

[45]  Kazuo Murota,et al.  Exploiting Sparsity in Semidefinite Programming via Matrix Completion I: General Framework , 2000, SIAM J. Optim..

[46]  G. Rozvany Topology optimization in structural mechanics , 2001 .

[47]  Makoto Ohsaki,et al.  Symmetricity of the solution of semidefinite programming , 2002 .

[48]  室田 一雄,et al.  Imperfect bifurcation in structures and materials : engineering use of group-theoretic bifurcation theory , 2002 .

[49]  Masakazu Kojima,et al.  On the finite convergence of successive SDP relaxation methods , 2002, Eur. J. Oper. Res..

[50]  N. Katoh,et al.  SYMMETRICITY OF THE SOLUTION OF SEMIDEFINITE PROGRAM , 2007 .