First principles investigation of structural, electronic and optical properties of synthesized radiaannulene oligomers for 6,6,12-graphyne

[1]  D. Jana,et al.  Electronic and optical properties of non-hexagonal Dirac material S-graphene sheet and nanoribbons , 2020 .

[2]  D. Jana,et al.  A review on role of tetra-rings in graphene systems and their possible applications , 2020, Reports on progress in physics. Physical Society.

[3]  Yi Liu,et al.  Mirror symmetry origin of Dirac cone formation in rectangular two-dimensional materials. , 2020, Physical chemistry chemical physics : PCCP.

[4]  D. Jana,et al.  The topology and robustness of two Dirac cones in S-graphene: A tight binding approach , 2020, Scientific Reports.

[5]  K. Mikkelsen,et al.  Synthesis of radiaannulene oligomers to model the elusive carbon allotrope 6,6,12-graphyne , 2019, Nature Communications.

[6]  D. Jana,et al.  Acetylenic linkage dependent electronic and optical behaviour of morphologically distinct '-ynes'. , 2019, Physical chemistry chemical physics : PCCP.

[7]  D. Jana,et al.  Effect and Characterization of Stone–Wales Defects on Graphene Quantum Dot: A First-Principles Study , 2018, Condensed Matter.

[8]  A. Al‐Saadi,et al.  First Theoretical Framework of Triphenylamine–Dicyanovinylene-Based Nonlinear Optical Dyes: Structural Modification of π-Linkers , 2018 .

[9]  A. Chakrabarti,et al.  Optical properties and magnetic flux-induced electronic band tuning of a T-graphene sheet and nanoribbon. , 2017, Physical chemistry chemical physics : PCCP.

[10]  D. Jana,et al.  Size dependent magnetic and optical properties in diamond shaped graphene quantum dots: A DFT study , 2016 .

[11]  R. Chauvin,et al.  carbo-Naphthalene: A Polycyclic carbo-Benzenoid Fragment of α-Graphyne. , 2016, Angewandte Chemie.

[12]  Z. Shao,et al.  Optical properties of α-, β-, γ-, and 6,6,12-graphyne structures: First-principle calculations , 2015 .

[13]  R. Chauvin,et al.  "Carbo-aromaticity" and novel carbo-aromatic compounds. , 2015, Chemical Society reviews.

[14]  Mark A Ratner,et al.  Towards graphyne molecular electronics , 2015, Nature Communications.

[15]  Yanhua Guo,et al.  Li decorated 6,6,12-graphyne: A new star for hydrogen storage material , 2014 .

[16]  D. Sanyal,et al.  Ab-initio calculation of electronic and optical properties of nitrogen and boron doped graphene nanosheet , 2014 .

[17]  C. Sevik,et al.  Vibrational and thermodynamic properties of α-, β-, γ-, and 6, 6, 12-graphyne structures , 2014, Nanotechnology.

[18]  Hui Yan,et al.  Two dimensional Dirac carbon allotropes from graphene. , 2014, Nanoscale.

[19]  Mingwen Zhao,et al.  Two-dimensional carbon topological insulators superior to graphene , 2013, Scientific Reports.

[20]  Wenpo Li,et al.  A first-principles study on the structural, elastic, electronic, optical, lattice dynamical, and thermodynamic properties of zinc-blende CdX (X = S, Se, and Te) , 2013 .

[21]  Wanlin Guo,et al.  Intrinsic electronic and transport properties of graphyne sheets and nanoribbons. , 2013, Nanoscale.

[22]  R. J. Xavier,et al.  Conformational stability, vibrational spectra, HOMO-LUMO and NBO analysis of 1,3,4-thiadiazolidine-2,5-dithione with experimental (FT-IR and FT-Raman) techniques and scaled quantum mechanical calculations. , 2013, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[23]  Yo Shimizu,et al.  Syntheses and properties of graphyne fragments: trigonally expanded dehydrobenzo[12]annulenes. , 2013, Chemistry.

[24]  Chia-Liang Sun,et al.  Effect of chemical doping of boron and nitrogen on the electronic, optical, and electrochemical properties of carbon nanotubes , 2013 .

[25]  G. Gao,et al.  The transport properties and new device design: the case of 6,6,12-graphyne nanoribbons. , 2013, Nanoscale.

[26]  A. L. Ivanovskii,et al.  Graphynes and graphdyines , 2013 .

[27]  Jinyang Xi,et al.  Carrier Mobility in Graphyne Should Be Even Larger than That in Graphene: A Theoretical Prediction. , 2013, The journal of physical chemistry letters.

[28]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[29]  H. Sevinçli,et al.  A bottom-up route to enhance thermoelectric figures of merit in graphene nanoribbons , 2013, Scientific reports.

[30]  Yu Liu,et al.  Structural and electronic properties of T graphene: a two-dimensional carbon allotrope with tetrarings. , 2013, Physical review letters.

[31]  A. Görling,et al.  Two-dimensional materials with Dirac cones: Graphynes containing heteroatoms , 2012 .

[32]  Francesc Viñes,et al.  Competition for graphene: graphynes with direction-dependent Dirac cones. , 2012, Physical review letters.

[33]  H. Choi,et al.  Graphyne: Hexagonal network of carbon with versatile Dirac cones , 2011, 1112.2932.

[34]  Fengmin Wu,et al.  Elastic, Electronic, and Optical Properties of Two-Dimensional Graphyne Sheet , 2011 .

[35]  A. Enyashin,et al.  Graphene allotropes , 2011 .

[36]  A. Balandin Thermal properties of graphene and nanostructured carbon materials. , 2011, Nature materials.

[37]  Qiang Sun,et al.  Electronic structures and bonding of graphyne sheet and its BN analog. , 2011, The Journal of chemical physics.

[38]  Lizhi Zhang,et al.  Graphyne- and Graphdiyne-based Nanoribbons: Density Functional Theory Calculations of Electronic Structures , 2011, 1211.4310.

[39]  H. Sevinçli,et al.  Control of thermal and electronic transport in defect-engineered graphene nanoribbons. , 2011, ACS nano.

[40]  Hongyu Zhang,et al.  High Mobility and High Storage Capacity of Lithium in sp–sp2 Hybridized Carbon Network: The Case of Graphyne , 2011 .

[41]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[42]  R. Kaner,et al.  Honeycomb carbon: a review of graphene. , 2010, Chemical reviews.

[43]  M I Katsnelson,et al.  Chemical functionalization of graphene , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[44]  S. Sen,et al.  Static and dynamic hyperpolarizability tensors of aluminum metal clusters, Al4M4 (M=Li, Na, and K) , 2007 .

[45]  Charles A. Johnson,et al.  Carbon networks based on benzocyclynes. 6. synthesis of graphyne substructures via directed alkyne metathesis. , 2007, Organic letters.

[46]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[47]  S. Sen,et al.  Frequency-dependent nonlinear optical properties of CdSe clusters , 2006 .

[48]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[49]  N. Handy,et al.  A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP) , 2004 .

[50]  Joerg Heber,et al.  Broadband Modulation of Light by Using an Electro-Optic Polymer , 2002, Science.

[51]  D. V. Petrov,et al.  Size and Band-Gap Dependences of the First Hyperpolarizability of CdxZn1-xS Nanocrystals , 2002 .

[52]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0104182.

[53]  Zhang,et al.  Low (Sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape , 2000, Science.

[54]  Jami English,et al.  Carbon networks based on dehydrobenzoannulenes. 3. Synthesis of graphyne substructures , 2000, Organic letters.

[55]  Shugo Suzuki,et al.  Optimized geometries and electronic structures of graphyne and its family , 1998 .

[56]  Leo Radom,et al.  Harmonic Vibrational Frequencies: An Evaluation of Hartree−Fock, Møller−Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors , 1996 .

[57]  Soler,et al.  Self-consistent order-N density-functional calculations for very large systems. , 1996, Physical review. B, Condensed matter.

[58]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[59]  Ray H. Baughman,et al.  Structure‐property predictions for new planar forms of carbon: Layered phases containing sp2 and sp atoms , 1987 .

[60]  F. Schwierz Graphene transistors. , 2010, Nature nanotechnology.

[61]  A. Jen,et al.  A side-chain dendronized nonlinear optical polyimide with large and thermally stable electrooptic activity , 2004 .