The Multifocal Electroretinogram

The multifocal electroretinogram (mfERG) technique allows local ERG responses to be recorded simultaneously from many regions of the retina. As in the case of the full-field ERG, the ganglion cells contribute relatively little to the response, which originates largely from the outer retina. The mfERG is particularly valuable in cases in which the fundus appears normal, and it is difficult to distinguish between diseases of the outer retina and diseases of the ganglion cells and/or optic nerve. The mfERG can also help to differentiate among outer retinal diseases, to follow the progression of retinal diseases, and, with the addition of the mfVEP, to differentiate between organic and nonorganic causes of visual loss. However, because the difficulties encountered in recording and analyzing mfERG responses are greater than those involved in full-field ERG testing, mfERG testing is best left to centers with an electrophysiologist familiar with the mfERG test. Although this technique is relatively new and standards are still being developed, centers capable of recording reliable mfERG responses can be found in hundreds of locations around the world.

[1]  W. Verdon,et al.  Topography of the multifocal electroretinogram , 2004, Documenta Ophthalmologica.

[2]  D. Hood,et al.  Retinal origins of the primate multifocal ERG: implications for the human response. , 2002, Investigative ophthalmology & visual science.

[3]  M. Seeliger,et al.  Multifocal electroretinography in patients with Stargardt’s macular dystrophy , 1998, The British journal of ophthalmology.

[4]  Erich E. Sutter,et al.  Distribution of oscillatory components in the central retina , 2004, Documenta Ophthalmologica.

[5]  B. Lam Focal and Multifocal Electroretinogram , 2005 .

[6]  Donald C Hood,et al.  Assessing retinal function with the multifocal technique , 2000, Progress in Retinal and Eye Research.

[7]  Chris A Johnson,et al.  Selective loss of an oscillatory component from temporal retinal multifocal ERG responses in glaucoma. , 2002, Investigative ophthalmology & visual science.

[8]  M. Takagi,et al.  [Multifocal electroretinograms in patients with branch retinal artery occlusion]. , 1999, Nippon Ganka Gakkai zasshi.

[9]  Donald C Hood,et al.  Multifocal VEP and ganglion cell damage: applications and limitations for the study of glaucoma , 2003, Progress in Retinal and Eye Research.

[10]  E. Sutter,et al.  A topographic study of oscillatory potentials in man , 1995, Visual Neuroscience.

[11]  T Usui,et al.  Waveform changes of the first-order multifocal electroretinogram in patients with glaucoma. , 2000, Investigative ophthalmology & visual science.

[12]  V. Greenstein,et al.  An attempt to detect glaucomatous damage to the inner retina with the multifocal ERG. , 2000, Investigative ophthalmology & visual science.

[13]  W Seiple,et al.  A comparison of the components of the multifocal and full-field ERGs , 1997, Visual Neuroscience.

[14]  John S. Werner,et al.  Multifocal electroretinogram: age-related changes for different luminance levels , 2002, Graefe's Archive for Clinical and Experimental Ophthalmology.

[15]  M A Bearse,et al.  Imaging localized retinal dysfunction with the multifocal electroretinogram. , 1996, Journal of the Optical Society of America. A, Optics, image science, and vision.

[16]  R. Carr,et al.  Local cone and rod system function in progressive cone dystrophy. , 2002, Investigative ophthalmology & visual science.

[17]  W Seiple,et al.  Multifocal rod electroretinograms. , 1998, Investigative ophthalmology & visual science.

[18]  Erich E. Sutter,et al.  The field topography of ERG components in man—I. The photopic luminance response , 1992, Vision Research.

[19]  E. Sutter,et al.  Mapping Inner Retinal Function through Enhancement of Adaptive Components in the M-ERG , 1999 .

[20]  Erich E. Sutter,et al.  The Fast m-Transform: A Fast Computation of Cross-Correlations with Binary m-Sequences , 1991, SIAM J. Comput..

[21]  G. R. Jackson,et al.  Aging-related changes in the multifocal electroretinogram. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[22]  P. Sieving,et al.  A proximal retinal component in the primate photopic ERG a-wave. , 1994, Investigative ophthalmology & visual science.

[23]  M A Bearse,et al.  Mapping of retinal function in diabetic retinopathy using the multifocal electroretinogram. , 1997, Investigative ophthalmology & visual science.

[24]  Chris A. Johnson,et al.  The Topographic Relationship Between Multifocal Electroretinographic and Behavioral Perimetric Measures of Function in Glaucoma , 2001, Optometry and vision science : official publication of the American Academy of Optometry.

[25]  Donald C. Hood,et al.  Guidelines for basic multifocal electroretinography (mfERG) , 2003, Documenta Ophthalmologica.

[26]  M. Mita,et al.  Effects of aging on the first and second-order kernels of multifocal electroretinogram. , 2002, Japanese journal of ophthalmology.

[27]  P. Howdle,et al.  Assignment1 of GALGT encoding β-1,4N-acetylgalactosaminyl-transferase (GalNAc-T) and KIF5A encoding neuronal kinesin (D12S1889) to human chromosome band 12q13 by assignment to ICI YAC 26EG10 and in situ hybridization , 1998, Cytogenetic and Genome Research.

[28]  E Zrenner,et al.  Implicit time topography of multifocal electroretinograms. , 1998, Investigative ophthalmology & visual science.

[29]  Donald C. Hood,et al.  Identifying inner retinal contributions to the human multifocal ERG , 1999, Vision Research.

[30]  A. Palmowski,et al.  Multifocal Electroretinogram with a Multiflash Stimulation Technique in Open-Angle Glaucoma , 2002, Ophthalmic Research.

[31]  Masayuki Horiguchi,et al.  Stray light-induced multifocal electroretinograms. , 2003, Investigative ophthalmology & visual science.

[32]  G B Arden,et al.  The pattern electroretinogram , 1988, Eye.

[33]  P. Sieving,et al.  Push–pull model of the primate photopic electroretinogram: A role for hyperpolarizing neurons in shaping the b-wave , 1994, Visual Neuroscience.

[34]  A. Palmowski,et al.  The effect of time of day and repeat reliability on the fast flicker multifocal ERG , 2000, Documenta Ophthalmologica.

[35]  G. Trick,et al.  Improved electrode for electroretinography. , 1979, Investigative ophthalmology & visual science.

[36]  G. Adams,et al.  The electroretinogram. , 1989, Archives of disease in childhood.

[37]  Erich E. Sutter,et al.  The optic nerve head component of the human ERG , 1999, Vision Research.

[38]  Donald C. Hood,et al.  Multifocal ERG and VEP responses and visual fields: comparing disease-related changes , 2004, Documenta Ophthalmologica.

[39]  E Zrenner,et al.  Multifocal electroretinography in retinitis pigmentosa. , 1998, American journal of ophthalmology.