Optical properties of red-emitting long afterglow phosphor Mg2Si1-xGexO4: Mn2+/Mn4+

[1]  M. Berkowski,et al.  Electron Paramagnetic Resonance and Optical Studies of Thermoluminescence Processes in Mn-Doped YAlO3 Single Crystals , 2021, The Journal of Physical Chemistry C.

[2]  J. Ueda,et al.  Blue Persistent Phosphor of YSiO2N:Ce3+ Developed by Codoping Sm3+ or Tm3+ Ions and Thermoluminescence Analysis of Their Trap Distributions , 2021, physica status solidi (a).

[3]  Xudong Sun,et al.  Regulating anti-site defects in MgGa2O4:Mn4+ through Mg2+/Ge4+ doping to greatly enhance broadband red emission for plant cultivation , 2021, Journal of Materials Research and Technology.

[4]  P. Smet,et al.  Persistent phosphors for the future: Fit for the right application , 2020, Journal of Applied Physics.

[5]  P. Townsend,et al.  Luminescence sites and spectra of metal doped microwave synthesized Mg2SiO4:Tb , 2020 .

[6]  E. Zych,et al.  Effect of Ge:Si ratio and charging energy on carriers trapping in Y2(Ge,Si)O5:Pr powders observed with thermoluminescence methods , 2020 .

[7]  T. T. Duc,et al.  Photoluminescent properties of red-emitting phosphor BaMgAl10O17:Cr3+ for plant growth LEDs , 2020 .

[8]  B. Liu,et al.  Preparation and luminescence properties of thermally stable Mn4+ doped spinel red-emitting ceramic phosphors , 2020, Journal of Luminescence.

[9]  Yongchao Jia,et al.  Site Occupation and Luminescence of Novel Orange-Red Ca3M2Ge3O12:Mn2+,Mn4+ (M = Al, Ga) Phosphors , 2020 .

[10]  Ümit H. Kaynar,et al.  Comprehensive study of photoluminescence and cathodoluminescence of Eu and Tb doped Mg2SiO4 prepared via a solid-state reaction technique , 2020 .

[11]  P. Dorenbos,et al.  Vacuum-Referred Binding Energies of Bismuth and Lanthanide Levels in ARE(Si,Ge)O4 (A = Li, Na; RE = Y, Lu): Toward Designing Charge-Carrier-Trapping Processes for Energy Storage , 2020, Chemistry of Materials.

[12]  Yuan Zhong,et al.  Enhancing photoluminescence properties of Mn 4+ ‐activated Sr 4− x Ba x Al 14 O 25 red phosphors for plant cultivation LEDs , 2019, Journal of the American Ceramic Society.

[13]  Dawei Zhang,et al.  Mn4+ activated Al2O3 red-emitting ceramic phosphor with excellent thermal conductivity. , 2019, Optics express.

[14]  J. Qiu,et al.  Surface crystallized Mn‐doped glass‐ceramics for tunable luminescence , 2019, Journal of the American Ceramic Society.

[15]  Junchang Wang,et al.  Luminescence properties of red-emitting Mn2+-Activated Na2Mg5Si12O30 phosphors , 2019, Materials Research Bulletin.

[16]  Xufeng Zhou,et al.  Designing a novel red to near-infrared persistent phosphor CaMgGe2O6:Mn2+,Sm3+ based on a vacuum referred binding energy diagram. , 2019, Dalton transactions.

[17]  D. Poelman,et al.  Near-infrared persistent luminescence in Mn4+ doped perovskite type solid solutions , 2019, Ceramics International.

[18]  Shi-xiu Cao,et al.  A near-ultraviolet (NUV) converting blue-violet Mg2SiO4:Ce3+ phosphor for white light-emitting-diodes (w-LEDs) , 2019, Journal of Luminescence.

[19]  Huihong Lin,et al.  Positive effect of codoping Yb3+ on the super-long persistent luminescence of Cr3+-doped zinc aluminum germanate , 2018, Ceramics International.

[20]  Mingmei Wu,et al.  Mn2+ and Mn4+ red phosphors: synthesis, luminescence and applications in WLEDs. A review , 2018 .

[21]  C. Duan,et al.  Luminescence properties and the thermal quenching mechanism of Mn2+ doped Zn2GeO4 long persistent phosphors. , 2018, Dalton transactions.

[22]  Yihua Hu,et al.  Photoluminescence and afterglow of Mn2+ doped lithium zinc silicate , 2017 .

[23]  L. P. Sosman,et al.  Photoluminescence of the manganese ions on Mg2Si2O6-Mg2SiO4 compounds , 2017 .

[24]  S. J. Dhoble,et al.  Persistent luminescence: An insight , 2016 .

[25]  R. Gartia,et al.  Physical basis of persistent luminescence: The case of europium doped Ca1−xSrxS , 2016 .

[26]  Yang Li,et al.  Long persistent phosphors--from fundamentals to applications. , 2016, Chemical Society reviews.

[27]  Qingming Huang,et al.  Bandgap Tailoring via Si Doping in Inverse-Garnet Mg3Y2Ge3O12:Ce(3+) Persistent Phosphor Potentially Applicable in AC-LED. , 2015, ACS applied materials & interfaces.

[28]  M. Ayvacikli,et al.  Thermally stimulated luminescence glow curve structure of β-irradiated CaB4O7:Dy. , 2015, Luminescence : the journal of biological and chemical luminescence.

[29]  Nicola Doebelin,et al.  Profex: a graphical user interface for the Rietveld refinement program BGMN , 2015, Journal of applied crystallography.

[30]  Sunil Kumar Singh Red and near infrared persistent luminescence nano-probes for bioimaging and targeting applications , 2014 .

[31]  P. Dorenbos,et al.  Electron tunnelling phenomena in YPO4 : Ce,Ln (Ln = Er, Ho, Nd, Dy) , 2014 .

[32]  M. Henini,et al.  Solid state synthesis of SrAl2O4:Mn2+ co-doped with Nd3+ phosphor and its optical properties , 2013 .

[33]  P. Smet,et al.  Revealing trap depth distributions in persistent phosphors , 2013 .

[34]  Tae-hyung Kim,et al.  Effect of Alkali-Earth Metal Fluorides on Phase and Luminescence of Magnesium Germanate Phosphors , 2010 .

[35]  Han Yang,et al.  The UV and VUV luminescence properties of the phosphor Mg2GeO4:Tb3+ , 2010 .

[36]  P. Smet,et al.  Persistent Luminescence in Non-Eu2+-Doped Compounds: A Review , 2010, Materials.

[37]  P. Smet,et al.  Persistent Luminescence in Eu2+-Doped Compounds: A Review , 2010, Materials.

[38]  Hong-bin Liang,et al.  Luminescence properties of a novel red emitting phosphor, Mg 2GeO 4:Sm 3+ , 2009 .

[39]  Wei-ping Zhang,et al.  Luminescence properties of a new red long-lasting phosphor: Mg2SiO4:Dy3+, Mn2+ , 2008 .

[40]  Shi Chao-shu,et al.  Synthesis and Luminescence Properties of Red Phosphors:Mn2+ Doped MgSiO3 and Mg2SiO4 Prepared by Sol-Gel Method , 2006 .

[41]  A. Bos Theory of thermoluminescence , 2006 .

[42]  Hong-bin Liang,et al.  A novel red phosphor Mg2GeO4 doped with Eu3+ for PDP applications , 2006 .

[43]  David J. Huntley,et al.  An explanation of the power-law decay of luminescence , 2006 .

[44]  Zilong Tang,et al.  Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor , 2003 .

[45]  M. Iwasaki,et al.  Red phosphorescence properties of Mn ions in MgO–GeO2 compounds , 2003 .

[46]  S. Guggenheim,et al.  Forsteritic olivine: effect of crystallographic direction on dissolution kinetics , 2000 .

[47]  A. Buenfil,et al.  Ionisation density effects in the thermoluminescence of TLD-100 : Computerised Tm-Tstop glow curve analysis , 1999 .

[48]  N. Ashcroft,et al.  Vegard's law. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[49]  P. Avouris,et al.  A tunneling model for the decay of luminescence in inorganic phosphors: The case of Zn2SiO4:Mn , 1981 .

[50]  S. McKeever On the analysis of complex thermoluminescence. Glow-curves: Resolution into individual peaks , 1980 .

[51]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[52]  Y. Tanabe,et al.  On the Absorption Spectra of Complex Ions II , 1954 .

[53]  Z. Song,et al.  Orange super-long persistent luminescent materials: (Sr1−xBax)3SiO5:Eu2+,Nb5+ , 2021 .

[54]  S. Tanabe,et al.  Persistent luminescence instead of phosphorescence: History, mechanism, and perspective , 2019, Journal of Luminescence.

[55]  M. Brik,et al.  Critical Review—A Review of the Electronic Structure and Optical Properties of Ions with d3 Electron Configuration (V2+, Cr3+, Mn4+, Fe5+) and Main Related Misconceptions , 2018 .

[56]  Liya Zhou,et al.  Preparation, structural and optical characteristics of a deep red-emitting Mg2Al4Si5O18: Mn4+ phosphor for warm w-LEDs , 2018 .

[57]  Robert Kohl,et al.  Electron Paramagnetic Resonance Of Transition Ions , 2016 .

[58]  M. Brik,et al.  On the optical properties of the Mn4+ ion in solids , 2013 .

[59]  Arthur Schweiger,et al.  EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. , 2006, Journal of magnetic resonance.

[60]  Y. Tanabe,et al.  On the absorption spectra of complex ions. II , 2002 .

[61]  B. Henderson,et al.  Defects in the alkaline earth oxides , 1977 .

[62]  田辺 行人,et al.  Multiplets of transition-metal ions in crystals , 1970 .