Stratigraphy, structure and geology of Late Miocene Verkhneavachinskaya caldera with basaltic-andesitic ignimbrites at Eastern Kamchatka

1 Institute of Volcanology and Seismology, Far East Branch, Russian Academy of Science, Piip Boulevard 9, Petropavlovsk-Kamchatsky, 683006, Russia; olgakuvikas@gmail.com 2 Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Staromonetnyi per. 35, Moscow, 119017, Russia 3 Fersman Mineralogical Museum, Leninskii avenue 18 build. 2, Moscow, 115162, Russia 4 Department of Earth Sciences, 1272 University of Oregon, Eugene, OR 97403, USA 5 Geowissenschaftliches Zentrum Göttingen, Abteilung Geochemie, Universität Göttingen, Goldschmidtstraße 1 build. 2408, Göttingen, 37077, Germany * Corresponding author † Deceased

[1]  B. Coira,et al.  Calderas , 2020, Out of the Crater.

[2]  O. Bergal-Kuvikas,et al.  The analysis of spatial distributions, origins of caldera-forming eruptions with basaltic-andesitic magma compositions, and genesis of Miocene ignimbrites of the Eastern volcanic belt, Kamchatka , 2019, Geodynamics & Tectonophysics.

[3]  T. Gerya,et al.  Isotopic and Petrologic Investigation, and a Thermomechanical Model of Genesis of Large-Volume Rhyolites in Arc Environments: Karymshina Volcanic Complex, Kamchatka, Russia , 2019, Front. Earth Sci..

[4]  E. Klimenko,et al.  A petrological and geochemical study on time-series samples from Klyuchevskoy volcano, Kamchatka arc , 2017, Contributions to Mineralogy and Petrology.

[5]  A. Schmitt,et al.  Archean Xenocrysts in Modern Volcanic Rocks from Kamchatka: Insight into the Basement and Paleodrainage , 2016, The Journal of Geology.

[6]  O. Bergal-Kuvikas,et al.  The geodynamic conditions for the generation of adakites and Nb-rich basalts (NEAB)) in Kamchatka , 2015, Journal of Volcanology and Seismology.

[7]  Agust Gudmundsson,et al.  Caldera faults capture and deflect inclined sheets: an alternative mechanism of ring dike formation , 2015, Bulletin of Volcanology.

[8]  R. Duncan,et al.  Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot , 2014 .

[9]  A. Lander,et al.  The Origin of the Modern Kamchatka Subduction Zone , 2013 .

[10]  S. Popruzhenko,et al.  Evolution of the Kurile-Kamchatkan volcanic arcs and dynamics of the Kamchatka-Aleutian Junction , 2013 .

[11]  V. Manville,et al.  Source to sink: A review of three decades of progress in the understanding of volcaniclastic processes, deposits, and hazards , 2009 .

[12]  F. Hauff,et al.  The origin of EM1 alkaline magmas during Cenozoic reorganization of subduction zone of Kamchatka , 2009 .

[13]  J. Stevenson,et al.  Eocene arc-continent collision and crustal consolidation in Kamchatka, Russian Far East , 2009, American Journal of Science.

[14]  G. Mahood,et al.  Tectonic controls on the nature of large silicic calderas in volcanic arcs , 2008 .

[15]  P. Renne,et al.  Synchronizing Rock Clocks of Earth History , 2008, Science.

[16]  M. Parada,et al.  Evidence of magma-water interaction during the 13,800 years BP explosive cycle of the Licán Ignimbrite, Villarrica volcano (southern Chile) , 2007 .

[17]  M. Portnyagin,et al.  The origin of hydrous, high-δ18O voluminous volcanism: diverse oxygen isotope values and high magmatic water contents within the volcanic record of Klyuchevskoy volcano, Kamchatka, Russia , 2007 .

[18]  D. Garbe‐Schönberg,et al.  Drastic shift in lava geochemistry in the volcanic-front to rear-arc region of the Southern Kamchatkan subduction zone: Evidence for the transition from slab surface dehydration to sediment melting , 2007 .

[19]  Clive Oppenheimer,et al.  The size and frequency of the largest explosive eruptions on Earth , 2004 .

[20]  T. Feininger Igneous Rocks: A Classification and Glossary of Terms (Recommendations of the IUGS Subcommission on the Systematics of Igneous Rocks).Second edition. Edited by R.W. LeMaitre. Cambridge University Press, New York, N.Y., 2002, 236 + xvi pages. US$65 (ISBN 0–521–66215–X). , 2002 .

[21]  G. Giordano,et al.  Large volume phreatomagmatic ignimbrites from the Colli Albani volcano (Middle Pleistocene, Italy) , 2002 .

[22]  G. Wörner,et al.  Sources and Fluids in the Mantle Wedge below Kamchatka, Evidence from Across-arc Geochemical Variation , 2001 .

[23]  Agust Gudmundsson Formation and development of normal-fault calderas and the initiation of large explosive eruptions , 1998 .

[24]  A. Freundt The formation of high-grade ignimbrites, I: Experiments on high- and low-concentration transport systems containing sticky particles , 1998 .

[25]  O. N. Volynets,et al.  Isotopic composition of late neogene K-Na alkaline basalts of eastern kamchatka: indicators of the heterogeneity of the mantle magma sources , 1997 .

[26]  K. Hess,et al.  Viscosities of hydrous leucogranitic melts: A non-Arrhenian model , 1996 .

[27]  C. Robin,et al.  Mafic pyroclastic flows at Santa Maria (Gaua) Volcano, Vanuatu: the caldera formation problem in mainly mafic island arc volcanoes , 1995 .

[28]  A. Freundt,et al.  Eruption and emplacement of a basaltic welded ignimbrite during caldera formation on Gran Canaria , 1995 .

[29]  E. Geist,et al.  Large‐scale deformation related to the collision of the Aleutian Arc with Kamchatka , 1994 .

[30]  O. N. Volynets Geochemical Types, Petrology, and Genesis of Late Cenozoic Volcanic Rocks from the Kurile-Kamchatka Island-Arc System , 1994 .

[31]  C. Henry,et al.  Distinguishing strongly rheomorphic tuffs from extensive silicic lavas , 1992 .

[32]  C. Hampton,et al.  Volatiles in alkaline magmatism , 1990 .

[33]  D. Dingwell,et al.  Relaxation in silicate melts;Relaxation in silicate melts , 1990 .

[34]  Michael P. Ryan,et al.  The glass transition in basalt. , 1981 .

[35]  S. Self,et al.  Products of Ignimbrite Eruptions , 1973 .

[36]  R. V. Fisher,et al.  PROPOSED CLASSIFICATION OF VOLCANICLASTIC SEDIMENTS AND ROCKS , 1961 .

[37]  Louise Nevelson's,et al.  The Smithsonian Institution , 1854, The Buffalo medical journal and monthly review of medical and surgical science.

[38]  A. Rogozin,et al.  New discovered Late Miocene Verkhneavachinsksya caldera on Eastern Kamchatka , 2016 .

[39]  E. Konstantinovskaya Early Eocene Arc–Continent Collision in Kamchatka, Russia: Structural Evolution and Geodynamic Model , 2011 .

[40]  P. Izbekov,et al.  Large-volume silicic volcanism in Kamchatka: Ar-Ar and U-Pb ages, isotopic, and geochemical characteristics of major pre-Holocene caldera-forming eruptions , 2010 .

[41]  J. Lees,et al.  Volcanism and Subduction: The Kamchatka Region , 2007 .

[42]  M. Portnyagin,et al.  Campanian oceanic siliceous-volcanogenic deposit in the basement of the East Kachatka volcanic belt , 2005 .

[43]  A. Nicholsb,et al.  Glass transition temperatures of natural hydrous melts : a relationship with shear viscosity and implications for the welding process , 2005 .

[44]  J. McPhie,et al.  Volcanic textures: a guide to the interpretation of textures in volcanic rocks. , 1993 .

[45]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[46]  F. Dorendorfa,et al.  Late Pleistocene to Holocene activity at Bakening volcano and surrounding monogenetic centers ( Kamchatka ) : volcanic geology and geochemical evolution , 2022 .