Semismooth Newton and Augmented Lagrangian Methods for a Simplified Friction Problem

In this paper a simplified friction problem and iterative second-order algorithms for its solution are analyzed in infinite dimensional function spaces. Motivated from the dual formulation, a primal-dual active set strategy and a semismooth Newton method for a regularized problem as well as an augmented Lagrangian method for the original problem are presented and their close relation is analyzed. Local as well as global convergence results are given. By means of numerical tests, we discuss among others convergence properties, the dependence on the mesh, and the role of the regularization and illustrate the efficiency of the proposed methodologies.

[1]  Xiaojun Chen,et al.  Smoothing Methods and Semismooth Methods for Nondifferentiable Operator Equations , 2000, SIAM J. Numer. Anal..

[2]  Michael Ulbrich,et al.  Semismooth Newton Methods for Operator Equations in Function Spaces , 2002, SIAM J. Optim..

[3]  Weimin Han,et al.  A regularization procedure for a simplified friction problem , 1991 .

[4]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[5]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[6]  Kazufumi Ito,et al.  Semi–Smooth Newton Methods for Variational Inequalities of the First Kind , 2003 .

[7]  P. W. Christensen,et al.  Frictional Contact Algorithms Based on Semismooth Newton Methods , 1998 .

[8]  Weimin Han,et al.  The regularization method for an obstacle problem , 1994 .

[9]  P. W. Christensen A nonsmooth Newton method for elastoplastic problems , 2002 .

[10]  M. Hintermueller,et al.  A primal-dual active set algorithm for bilaterally control constrained optimal control problems , 2003 .

[11]  K. Kunisch,et al.  Primal-Dual Strategy for Constrained Optimal Control Problems , 1999 .

[12]  Bernd Kummer,et al.  Generalized Newton and NCP-methods: convergence, regularity, actions , 2000 .

[13]  Giuseppe Savaré,et al.  Regularity and perturbation results for mixed second order elliptic problems , 1997 .

[14]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[15]  R. Glowinski Lectures on Numerical Methods for Non-Linear Variational Problems , 1981 .

[16]  J. Tinsley Oden,et al.  A priori error estimation of hp-finite element approximations of frictional contact problems with normal compliance , 1993 .

[17]  R. Kornhuber Adaptive monotone multigrid methods for nonlinear variational problems , 1997 .

[18]  R. Glowinski,et al.  Numerical Analysis of Variational Inequalities , 1981 .

[19]  Kazufumi Ito,et al.  The Primal-Dual Active Set Method for Nonlinear Optimal Control Problems with Bilateral Constraints , 2004, SIAM J. Control. Optim..

[20]  P. W. Christensen,et al.  Formulation and comparison of algorithms for frictional contact problems , 1998 .

[21]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[22]  Karl Kunisch,et al.  A Comparison of a Moreau-Yosida-Based Active Set Strategy and Interior Point Methods for Constrained Optimal Control Problems , 2000, SIAM J. Optim..

[23]  Chen Wanji,et al.  Smoothing Newton method for solving two‐ and three‐dimensional frictional contact problems , 1998 .

[24]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[25]  J. Haslinger,et al.  On a splitting type algorithm for the numerical realization of contact problems with Coulomb friction , 2002 .

[26]  Weimin Han,et al.  On the numerical approximation of a frictional contact problem with normal compliance , 1996 .

[27]  R. Kornhuber Monotone multigrid methods for elliptic variational inequalities I , 1994 .

[28]  Michael Hintermüller,et al.  A semi‐smooth Newton method for constrained linear‐quadratic control problems , 2003 .

[29]  Liqun Qi,et al.  Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations , 1993, Math. Oper. Res..

[30]  Kazufumi Ito,et al.  Augmented Lagrangian methods for nonsmooth, convex optimization in Hilbert spaces , 2000 .

[31]  J. Lions,et al.  Inequalities in mechanics and physics , 1976 .

[32]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[33]  J. Haslinger,et al.  Solution of Variational Inequalities in Mechanics , 1988 .