A Linear Category of Polynomial Functors (extensional part)

Abstract. We construct a symmetric monoidal closed category of polynomial endofunctors (as objects) and simulation cells (as morphisms). This structure is defined using universal properties without reference to representing polynomial diagrams and is reminiscent of Day’s convolution on presheaves. We then make this category into a model for intuitionistic linear logic by defining an additive and exponential structure.

[1]  Peter Dybjer,et al.  Intuitionistic Type Theory , 2016 .

[2]  R. Seely,et al.  Locally cartesian closed categories and type theory , 1984, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  Pierre Hyvernat Predicate Transformers and Linear Logic: Yet Another Denotational Model , 2004, CSL.

[4]  Peter Hancock,et al.  Programming interfaces and basic topology , 2009, Ann. Pure Appl. Log..

[5]  Thorsten Altenkirch,et al.  Containers: Constructing strictly positive types , 2005, Theor. Comput. Sci..

[6]  V. Buchstaber,et al.  Mathematical Proceedings of the Cambridge Philosophical Society , 1979 .

[7]  Dan Synek,et al.  A Set Constructor for Inductive Sets in Martin-Löf's Type Theory , 1989, Category Theory and Computer Science.

[8]  Martin Hofmann,et al.  On the Interpretation of Type Theory in Locally Cartesian Closed Categories , 1994, CSL.

[9]  Peter Morris,et al.  Indexed Containers , 2009, 2009 24th Annual IEEE Symposium on Logic In Computer Science.

[10]  N. Gambino,et al.  Polynomial functors and polynomial monads , 2009, Mathematical Proceedings of the Cambridge Philosophical Society.

[11]  Pierre Hyvernat,et al.  A linear category of polynomial diagrams , 2012, Mathematical Structures in Computer Science.