Evolutionary conservation of prion‐forming abilities of the yeast Sup35 protein

Saccharomyces cerevisiae prion [PSI ] is a self‐propagating isoform of the eukaryotic release factor eRF3 (Sup35p). Sup35p consists of the evolutionary conserved release factor domain (Sup35C) and two evolutionary variable regions – Sup35N, which serves as a prion‐forming domain in S. cerevisiae, and Sup35M. Here, we demonstrate that the prion form of Sup35p is not observed among industrial and natural strains of yeast. Moreover, the prion ([PSI + ]) state of the endogenous S. cerevisiae Sup35p cannot be transmitted to the next generations via heterologous Sup35p or Sup35NM, originating from the distantly related yeast species Pichia methanolica. This suggests the existence of a ‘species barrier’ in yeast prion conversion. However, the chimeric Sup35p, containing the Sup35NM region of Pichia, can be turned into a prion in S. cerevisiae by overproduction of the identical Pichia Sup35NM. Therefore, the prion‐forming potential of Sup35NM is conserved in evolution. In the heterologous system, overproduction of Pichia Sup35p or Sup35NM induced formation of the prion form of S. cerevisiae Sup35p, albeit less efficiently than overproduction of the endogenous Sup35p. This implies that prion induction by protein overproduction does not require strict correspondence of the ‘inducer’ and ‘inducee’ sequences, and can overcome the ‘species barrier’.

[1]  V. Smirnov,et al.  The SUP 35 Omnipotent Suppressor Gene Is Involved in the Maintenance of the Non-Mendelian Determinant [ psi ' ] in the Yeast Saccharomyces cerevisiae , 2002 .

[2]  Y. Chernoff,et al.  Genetic study of interactions between the cytoskeletal assembly protein sla1 and prion-forming domain of the release factor Sup35 (eRF3) in Saccharomyces cerevisiae. , 1999, Genetics.

[3]  Y. Nakamura,et al.  C-terminal interaction of translational release factors eRF1 and eRF3 of fission yeast: G-domain uncoupled binding and the role of conserved amino acids. , 1999, RNA.

[4]  R. Wickner,et al.  Prion domain initiation of amyloid formation in vitro from native Ure2p. , 1999, Science.

[5]  S. Lindquist,et al.  Antagonistic Interactions between Yeast Chaperones Hsp104 and Hsp70 in Prion Curing , 1999, Molecular and Cellular Biology.

[6]  R. Wickner,et al.  6 Prions of Fungi: [URE3], [PSI], and [Het-s] Discovered as Heritable Traits , 1999 .

[7]  T. Deák Molecular taxonomy of yeasts. , 1999, Acta microbiologica et immunologica Hungarica.

[8]  Stanley B. Prusiner,et al.  Nobel Lecture: Prions , 1998 .

[9]  Zadorskiĭ Sp,et al.  SUP35 gene in Pichia methanolica is a recessive suppressor in Saccharomyces cerevisiae , 1998 .

[10]  M. Ter‐Avanesyan,et al.  Structure and Replication of Yeast Prions , 1998, Cell.

[11]  J. Weissman,et al.  A Critical Role for Amino-Terminal Glutamine/Asparagine Repeats in the Formation and Propagation of a Yeast Prion , 1998, Cell.

[12]  S. Liebman,et al.  Overexpression of the SUP45 gene encoding a Sup35p-binding protein inhibits the induction of the de novo appearance of the [PSI+] prion. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[13]  S. Inge-Vechtomov,et al.  [SUP35 gene in Pichia methanolica is a recessive suppressor in Saccharomyces cerevisiae]. , 1998, Doklady Akademii nauk.

[14]  S. Liebman,et al.  Overexpression of the SUP 45 gene encoding a Sup 35 p-binding protein inhibits the induction of the de novo appearance of the [ PSI 1 ] prion , 1998 .

[15]  Y. Chernoff,et al.  Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae. , 1997, Genetics.

[16]  S. Paushkin,et al.  In vitro propagation of the prion-like state of yeast Sup35 protein. , 1997, Science.

[17]  K. Wüthrich,et al.  Prion-inducing domain 2-114 of yeast Sup35 protein transforms in vitro into amyloid-like filaments. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[18]  S. Lindquist,et al.  Self-Seeded Fibers Formed by Sup35, the Protein Determinant of [PSI +], a Heritable Prion-like Factor of S. cerevisiae , 1997, Cell.

[19]  Y. Chernoff,et al.  Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. , 1996, Genetics.

[20]  S. Lindquist,et al.  Maintenance and inheritance of yeast prions. , 1996, Trends in genetics : TIG.

[21]  N. Hunter,et al.  Novel polymorphisms in the caprine PrP gene: a codon 142 mutation associated with scrapie incubation period. , 1996, The Journal of general virology.

[22]  J R Glover,et al.  Support for the Prion Hypothesis for Inheritance of a Phenotypic Trait in Yeast , 1996, Science.

[23]  S. Paushkin,et al.  Propagation of the yeast prion‐like [psi+] determinant is mediated by oligomerization of the SUP35‐encoded polypeptide chain release factor. , 1996, The EMBO journal.

[24]  O. Jean-Jean,et al.  Is there a human [psi]? , 1996, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.

[25]  R. Wickner,et al.  Prion-Inducing Domain of Yeast Ure2p and Protease Resistance of Ure2p in Prion-Containing Cells , 1995, Science.

[26]  F. Cohen,et al.  Prion propagation in mice expressing human and chimeric PrP transgenes implicates the interaction of cellular PrP with another protein , 1995, Cell.

[27]  V. Kushnirov,et al.  [Structure and functional similarity of yeast Sup35p and Ure2p proteins to mammalian prions]. , 1995, Molekuliarnaia biologiia.

[28]  J. Piškur,et al.  A mitochondrial molecular marker, ori-rep-tra, for differentiation of yeast species , 1995, Applied and environmental microbiology.

[29]  S W Liebman,et al.  Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. , 1995, Science.

[30]  P. Lansbury,et al.  The chemistry of scrapie infection: implications of the 'ice 9' metaphor. , 1995, Chemistry & biology.

[31]  P. Lansbury,et al.  Cell-free formation of protease-resistant prion protein , 1994, Nature.

[32]  B. Cox Cytoplasmic Inheritance: Prion-like factors in yeast , 1994, Current Biology.

[33]  B. Chesebro,et al.  Heterologous PrP molecules interfere with accumulation of protease-resistant PrP in scrapie-infected murine neuroblastoma cells , 1994, Journal of virology.

[34]  V. Smirnov,et al.  The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [psi+] in the yeast Saccharomyces cerevisiae. , 1994, Genetics.

[35]  C. Nierras,et al.  The dominant PNM2- mutation which eliminates the psi factor of Saccharomyces cerevisiae is the result of a missense mutation in the SUP35 gene. , 1994, Genetics.

[36]  R. Wickner,et al.  [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. , 1994, Science.

[37]  H. Fraser,et al.  Transmission of bovine spongiform encephalopathy and scrapie to mice. , 1992, The Journal of general virology.

[38]  O. Ozier-Kalogeropoulos,et al.  A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. , 1993, Nucleic acids research.

[39]  Y. Chernoff,et al.  Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non‐overlapping functional regions in the encoded protein , 1993, Molecular microbiology.

[40]  A. Bretscher,et al.  Construction of a GAL1-regulated yeast cDNA expression library and its application to the identification of genes whose overexpression causes lethality in yeast. , 1992, Genetics.

[41]  Y. Chernoff,et al.  Dosage‐dependent translational suppression in yeast Saccharomyces cerevisiae , 1992, Yeast.

[42]  M. Samsonova,et al.  Conservative system for dosage-dependent modulation of translational fidelity in eukaryotes. , 1992, Biochimie.

[43]  V. Smirnov,et al.  Ribosome-bound EF-1α-like protein of yeast Saccharomyces cerevisiae , 1991 .

[44]  C. Kurtzman,et al.  Phylogenetic relationships among species of Saccharomyces, Schizosaccharomyces, Debaryomyces and Schwanniomyces determined from partial ribosomal RNA sequences , 1991, Yeast.

[45]  I. Tolstorukov,et al.  Divergence and conservation of SUP2(SUP35) gene of yeasts Pichia pinus and Saccharomyces cerevisiae , 1990, Yeast.

[46]  F. Sherman,et al.  Isolation and characterization of omnipotent suppressors in the yeast Saccharomyces cerevisiae. , 1990, Genetics.

[47]  S. Hoshino,et al.  A human homologue of the yeast GST1 gene codes for a GTP‐binding protein and is expressed in a proliferation‐dependent manner in mammalian cells. , 1989, The EMBO journal.

[48]  R. Sikorski,et al.  A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. , 1989, Genetics.

[49]  Kimberlin Rh,et al.  Bovine spongiform encephalopathy. , 1992, The Veterinary record.

[50]  M. Tuite,et al.  The ψ factor of yeast: A problem in inheritance , 1988 .

[51]  T. Karpova,et al.  [Selective systems for obtaining recessive ribosomal suppressors in saccharomycete yeasts]. , 1988, Genetika.

[52]  G. Cesareni,et al.  Plasmid Vectors Carrying the Replication Origin of Filamentous Single-Stranded Phages , 1987 .

[53]  S. A. Parent,et al.  Vector systems for the expression, analysis and cloning of DNA sequence in S. cerevisiae , 1985, Yeast.

[54]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[55]  S. Prusiner,et al.  Scrapie prions aggregate to form amyloid-like birefringent rods , 1983, Cell.

[56]  G. Fink,et al.  Methods in yeast genetics , 1979 .

[57]  D. Cheresh URE 3 ] as an Altered URE 2 Protein : Evidence for a Prion Analog in Saccharomyces cerevisiae , 2022 .