Selected References on Optical Computing Using Phase Conjugation

There are many potential advantages for applying phase conjugation to optical computing. Phase conjugation can be used to provide optical amplification, thresholding, optical feedback and exact retroreflection. These properties, either singly or in combination can be used in various architectures to implement a host of computing algorithms.

[1]  G J Dunning,et al.  Spatial and temporal properties of a continuous-wave phaseconjugate resonator based on the photorefractive crystal BaTiO(3). , 1982, Optics letters.

[2]  Y. Fainman,et al.  Applications Of Photorefractive Crystals To Optical Signal Processing , 1986, Other Conferences.

[3]  M S Cohen,et al.  Design of a new medium for volume holographic information processing. , 1985, Applied optics.

[4]  R. Fisher Optical Phase Conjugation , 1983 .

[5]  N. Carlson,et al.  Real‐time optical waveform convolver/cross correlator , 1984 .

[6]  Thresholding semilinear phase-conjugate mirror. , 1988, Optics letters.

[7]  Image processing by four-wave mixing in photorefractive GaAs , 1987 .

[8]  R. Alfano,et al.  Determination of temporal correlation of ultrafast laser pulses using phase conjugation , 1985 .

[9]  A Yariv,et al.  Theoretical model for modal dispersal of polarization information and its recovery by phase conjugation. , 1986, Optics letters.

[10]  S H Lee,et al.  Optical digital logic operations by two-beam coupling in photorefractive material. , 1986, Applied optics.

[11]  D Psaltis,et al.  Bias-free time-integrating optical correlator using a photorefractive crystal. , 1985, Applied optics.

[12]  D. Brady,et al.  Adaptive optical networks using photorefractive crystals. , 1988, Applied optics.

[13]  A. Rebane,et al.  Picosecond pulse shaping by photochemical time-domain holography , 1983 .

[14]  Y Fainman,et al.  Optical implementation of an iterative algorithm formatrix inversion. , 1987, Applied optics.

[16]  P Yeh,et al.  Optical matrix-vector multiplication through four-wave mixing in photorefractive media. , 1987, Optics letters.

[17]  J W Goodman,et al.  Real-time intensity inversion using two-wave and four-wave mixing in photorefractive Bi12GeO20. , 1985, Applied optics.

[19]  Amnon Yariv,et al.  Time-Domain Signal Processing Via Four-Wave Mixing In Nonlinear Delay Lines , 1982 .

[20]  V. V. Kulikov,et al.  Light diffraction and nonlinear image processing in electrooptic Bi12SiO20 crystals , 1979 .

[21]  A. Yariv,et al.  Associative memories based on message-bearing optical modes in phase-conjugate resonators. , 1986, Optics letters.

[22]  H. J. White,et al.  Digital and analogue holographic associative memories , 1988 .

[23]  Amnon Yariv,et al.  Real‐time image processing via four‐wave mixing in a photorefractive medium , 1980 .

[24]  P. Yeh,et al.  Parallel image subtraction using a phase-conjugate Michelson interferometer. , 1986, Optics letters.

[25]  C. C. Guest,et al.  Adaptive 2D Holographic Associative Processor , 1986, Photonics West - Lasers and Applications in Science and Engineering.

[26]  Demetri Psaltis,et al.  A Photorefractive Integrated Optical Vector Matrix Multiplier , 1988, Optics & Photonics.

[27]  Demetri Psaltis,et al.  Physical Characterization Of The Photorefractive Incoherent-To-Coherent Optical Converter , 1985 .

[28]  B H Soffer,et al.  Associative holographic memory with feedback using phase-conjugate mirrors. , 1986, Optics letters.

[29]  D. Psaltis,et al.  Shift Invariance In Optical Associative Memories , 1986, Photonics West - Lasers and Applications in Science and Engineering.

[30]  J. Marburger Optical pulse integration and chirp reversal in degenerate four‐wave mixing , 1978 .

[31]  L. Pichon,et al.  Dynamic joint-fourier-transform correlator by Bragg diffraction in photorefractive Bi12SiO20 crystals , 1981 .

[32]  A Yariv,et al.  Spatial convolution and correlation of optical fields via degenerate four-wave mixing. , 1978, Optics letters.

[33]  D. Psaltis,et al.  Photorefractive incoherent-to-coherent optical converter. , 1983, Applied optics.

[34]  N. Carlson,et al.  Temporally programmed free-induction decay , 1984 .

[35]  D Psaltis,et al.  Optical information processing based on an associative-memory model of neural nets with thresholding and feedback. , 1985, Optics letters.

[36]  R. Lind,et al.  Imaging threshold detector using a phase-conjugate resonator in BaTiO(3). , 1986, Optics letters.

[37]  K Wagner,et al.  Multilayer optical learning networks. , 1987, Applied optics.

[38]  G. J. Dunning,et al.  Holographic associative memory with nonlinearities in the correlation domain. , 1987, Applied optics.

[39]  H. John Caulfield Associative mappings by optical holography , 1985 .

[40]  G J Dunning,et al.  Demonstration of image transmission through fibers by optical phase conjugation. , 1982, Optics letters.

[41]  A G Yodh,et al.  Storage and time reversal of light pulses using photon echoes. , 1983, Optics letters.

[42]  B H Soffer,et al.  All-optical associative memory with shift invariance and multiple-image recall. , 1987, Optics letters.

[43]  Amnon Yariv,et al.  Real-Time Image Processing Using A Self-Pumped Phase Conjugate Mirror , 1986, Photonics West - Lasers and Applications in Science and Engineering.

[44]  D Psaltis,et al.  Optical implementation of the Hopfield model. , 1985, Applied optics.

[45]  D. Z. Anderson,et al.  Coherent optical eigenstate memory. , 1986, Optics letters.

[46]  Kazuo Kyuma,et al.  Demonstration of an all‐optical associative holographic memory , 1986 .

[47]  Amnon Yariv,et al.  Real time image subtraction and ‘‘exclusive or’’ operation using a self‐pumped phase conjugate mirror , 1986 .