AwAS-II: A new Actuator with Adjustable Stiffness based on the novel principle of adaptable pivot point and variable lever ratio

The Actuator with Adjustable Stiffness (AwAS) is an actuator which can independently control equilibrium position and stiffness by two motors. The first motor controls the equilibrium position while the second motor regulates the compliance. This paper describes the design and development of AwAS-II which is an improved version of the original realization. AwAS tuned the stiffness by controlling the location of the springs and adjusting its arm, length. Instead AwAS-II regulates the compliance by implementing a force amplifier based on a lever mechanism on which a pivot point can adjust the force amplification ratio from zero to infinitive. As in the first implementation, the actuator which is responsible for adjusting the stiffness in AwAS II is not working against the spring forces. Its displacement is perpendicular to the force generated by springs which makes changing the stiffness energetically efficient. As the force amplification ratio can theoretically change from zero to infinitive consequently the level of stiffness can tune from very soft to completely rigid. Because this range does not depends on the spring's rate and length of the lever, thus soft springs and small lever can be used which result in a lighter and more compact setup. Furthermore as the lever arm is shorter the time required for the stiffness regulation is smaller.

[1]  Stefano Stramigioli,et al.  Modeling and design of energy efficient variable stiffness actuators , 2010, 2010 IEEE International Conference on Robotics and Automation.

[2]  K.W. Hollander,et al.  Adjustable robotic tendon using a 'Jack Spring'/spl trade/ , 2005, 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005..

[3]  Joel E. Chestnutt,et al.  The Actuator With Mechanically Adjustable Series Compliance , 2010, IEEE Transactions on Robotics.

[4]  D. Herring,et al.  Adjustable Robotic Tendon using a ‘ Jack Spring ’ TM , 2005 .

[5]  Antonio Bicchi,et al.  Variable Stiffness Actuators for Fast and Safe Motion Control , 2003, ISRR.

[6]  Nikolaos G. Tsagarakis,et al.  A novel actuator with adjustable stiffness (AwAS) , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[7]  Stephen P. DeWeerth,et al.  Biologically Inspired Joint Stiffness Control , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[8]  Antonio Bicchi,et al.  Design and Control of a Variable Stiffness Actuator for Safe and Fast Physical Human/Robot Interaction , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[9]  Giorgio Grioli,et al.  VSA-II: a novel prototype of variable stiffness actuator for safe and performing robots interacting with humans , 2008, 2008 IEEE International Conference on Robotics and Automation.

[10]  Gabriel Abba,et al.  Energy-Minimized Gait for a Biped Robot , 1995, AMS.

[11]  G. Hirzinger,et al.  A new variable stiffness design: Matching requirements of the next robot generation , 2008, 2008 IEEE International Conference on Robotics and Automation.

[12]  Antonio Bicchi,et al.  Fast and "soft-arm" tactics [robot arm design] , 2004, IEEE Robotics & Automation Magazine.

[13]  Matthew M. Williamson,et al.  Series elastic actuators , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[14]  Thomas G. Sugar A novel selective compliant actuator , 2002 .

[15]  Matthew D. Berkemeier,et al.  Design of a robot leg with elastic energy storage, comparison to biology, and preliminary experimental results , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[16]  Nikolaos G. Tsagarakis,et al.  MACCEPA 2.0: Adjustable compliant actuator with stiffening characteristic for energy efficient hopping , 2009, 2009 IEEE International Conference on Robotics and Automation.

[17]  Jae-Bok Song,et al.  Hybrid dual actuator unit: A design of a variable stiffness actuator based on an adjustable moment arm mechanism , 2010, 2010 IEEE International Conference on Robotics and Automation.