Scale filtered Euclidean medial axis and its hierarchy
暂无分享,去创建一个
[1] M. Pauly,et al. Discrete scale axis representations for 3D geometry , 2010, ACM Trans. Graph..
[2] Mark Pauly,et al. The scale axis transform , 2009, SCG '09.
[3] Luc Vincent,et al. Euclidean skeletons and conditional bisectors , 1992, Other Conferences.
[4] Benjamin B. Kimia,et al. Symmetry-Based Indexing of Image Databases , 1998, J. Vis. Commun. Image Represent..
[5] Michel Couprie,et al. Discrete Topological Transformations for Image Processing , 2012 .
[6] Axe médiant discret : propriétés arithmétiques et algorithmes , 2009 .
[7] Olaf Kübler,et al. Hierarchic Voronoi skeletons , 1995, Pattern Recognit..
[8] E. R. Davies,et al. Thinning algorithms: A critique and a new methodology , 1981, Pattern Recognit..
[9] D. Lee,et al. Skeletonization via Distance Maps and Level Sets , 1995 .
[10] Kaleem Siddiqi,et al. The Hamilton-Jacobi skeleton , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.
[11] Jean Serra,et al. Image Analysis and Mathematical Morphology , 1983 .
[13] Jacques-Olivier Lachaud,et al. Delaunay conforming iso-surface, skeleton extraction and noise removal , 2001, Comput. Geom..
[14] J. Chaussard. Topological tools for discrete shape analysis , 2010 .
[15] Hugues Talbot,et al. Robust skeletonization using the discrete lambda-medial axis , 2010 .
[16] David Coeurjolly,et al. Optimal Separable Algorithms to Compute the Reverse Euclidean Distance Transformation and Discrete Medial Axis in Arbitrary Dimension , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[17] Jean-Daniel Boissonnat,et al. Stability and Computation of Medial Axes - a State-of-the-Art Report , 2009, Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration.
[18] Xin-She Yang,et al. Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.
[19] F. Chazal,et al. The λ-medial axis , 2005 .
[20] Wim H. Hesselink,et al. Euclidean Skeletons of Digital Image and Volume Data in Linear Time by the Integer Medial Axis Transform , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[21] Michal Postolski. Discrete topology and geometry algorithms for quantitative human airway trees analysis based on computed tomography images , 2013 .
[22] Michel Couprie,et al. Discrete Bisector Function and Euclidean Skeleton , 2005, DGCI.
[23] Michel Couprie,et al. Scale Filtered Euclidean Medial Axis , 2013, DGCI.
[24] Azriel Rosenfeld,et al. Digital topology: Introduction and survey , 1989, Comput. Vis. Graph. Image Process..
[25] Hugues Talbot,et al. Robust skeletonization using the discrete λ-medial axis , 2011, Pattern Recognit. Lett..
[26] Sven J. Dickinson,et al. Canonical Skeletons for Shape Matching , 2006, 18th International Conference on Pattern Recognition (ICPR'06).
[27] Wilhelm Burger,et al. Digital Image Processing - An Algorithmic Introduction using Java , 2008, Texts in Computer Science.
[28] Gabriella Sanniti di Baja,et al. Pruning Discrete and Semiocontinuous Skeletons , 1995, ICIAP.