Calcineurin signaling promotes takotsubo syndrome

[1]  R. Graham,et al.  Piezo1 is the cardiac mechanosensor that initiates the cardiomyocyte hypertrophic response to pressure overload in adult mice , 2022, Nature Cardiovascular Research.

[2]  J. Backs,et al.  Adaptive versus maladaptive cardiac remodelling in response to sustained β-adrenergic stimulation in a new ‘ISO on/off model’ , 2021, PloS one.

[3]  James A Scott,et al.  Stress-associated neurobiological activity associates with the risk for and timing of subsequent Takotsubo syndrome. , 2021, European heart journal.

[4]  D. Dawson,et al.  Metabolic alterations in a rat model of takotsubo syndrome , 2021, Cardiovascular research.

[5]  Jeroen J. Bax,et al.  Cardiac arrest in takotsubo syndrome: results from the InterTAK Registry , 2019, European heart journal.

[6]  M. Vogt,et al.  Learned helplessness reveals a population at risk for depressive‐like behaviour after myocardial infarction in mice , 2019, ESC heart failure.

[7]  A. Henning,et al.  Myocardial and Systemic Inflammation in Acute Stress-Induced (Takotsubo) Cardiomyopathy , 2019, Circulation.

[8]  L. Jäncke,et al.  Altered limbic and autonomic processing supports brain-heart axis in Takotsubo syndrome , 2019, European heart journal.

[9]  Gary D Bader,et al.  Pathway enrichment analysis and visualization of omics data using g:Profiler, GSEA, Cytoscape and EnrichmentMap , 2019, Nature Protocols.

[10]  Jeroen J. Bax,et al.  International Expert Consensus Document on Takotsubo Syndrome (Part II): Diagnostic Workup, Outcome, and Management , 2018, European heart journal.

[11]  Jeroen J. Bax,et al.  International Expert Consensus Document on Takotsubo Syndrome (Part I): Clinical Characteristics, Diagnostic Criteria, and Pathophysiology , 2018, European heart journal.

[12]  E. Furlong,et al.  A proteolytic fragment of histone deacetylase 4 protects the heart from failure by regulating the hexosamine biosynthetic pathway , 2017, Nature Medicine.

[13]  H. Katus,et al.  Calcium Signaling and Transcriptional Regulation in Cardiomyocytes. , 2017, Circulation research.

[14]  Benjamin Meder,et al.  Catecholamine-Dependent β-Adrenergic Signaling in a Pluripotent Stem Cell Model of Takotsubo Cardiomyopathy. , 2017, Journal of the American College of Cardiology.

[15]  M. Guglin,et al.  Drug-Induced Takotsubo Cardiomyopathy , 2017, Journal of cardiovascular pharmacology and therapeutics.

[16]  B. Rothermel,et al.  Calcineurin signaling in the heart: The importance of time and place. , 2017, Journal of molecular and cellular cardiology.

[17]  U. Sechtem,et al.  Influence of Age and Gender in Takotsubo Syndrome. , 2016, Heart failure clinics.

[18]  Jihye Kim,et al.  DSigDB: drug signatures database for gene set analysis , 2015, Bioinform..

[19]  Jeroen J. Bax,et al.  Clinical Features and Outcomes of Takotsubo (Stress) Cardiomyopathy. , 2015, The New England journal of medicine.

[20]  Michael D. Schneider,et al.  Cardiac CaM Kinase II Genes &dgr; and &ggr; Contribute to Adverse Remodeling but Redundantly Inhibit Calcineurin-Induced Myocardial Hypertrophy , 2014, Circulation.

[21]  N. Gretz,et al.  CaM Kinase II mediates maladaptive post-infarct remodeling and pro-inflammatory chemoattractant signaling but not acute myocardial ischemia/reperfusion injury , 2014, EMBO molecular medicine.

[22]  Michael D. Schneider,et al.  Essential role of sympathetic endothelin A receptors for adverse cardiac remodeling , 2014, Proceedings of the National Academy of Sciences.

[23]  J. Madias Electrocardiogram attenuation of QRS complexes in association with Takotsubo syndrome. , 2014, Cardiovascular Revascularization Medicine.

[24]  E. Omerovic,et al.  Different catecholamines induce different patterns of takotsubo-like cardiac dysfunction in an apparently afterload dependent manner. , 2014, International journal of cardiology.

[25]  U. Sechtem,et al.  Gender differences in the manifestation of tako-tsubo cardiomyopathy. , 2013, International journal of cardiology.

[26]  J. Borén,et al.  A mouse model reveals an important role for catecholamine‐induced lipotoxicity in the pathogenesis of stress‐induced cardiomyopathy , 2013, European journal of heart failure.

[27]  C. Dieterich,et al.  FLEXBAR—Flexible Barcode and Adapter Processing for Next-Generation Sequencing Platforms , 2012, Biology.

[28]  Abdulrahman M El-Sayed,et al.  In-hospital mortality among patients with takotsubo cardiomyopathy: a study of the National Inpatient Sample 2008 to 2009. , 2012, American heart journal.

[29]  N. Peters,et al.  High Levels of Circulating Epinephrine Trigger Apical Cardiodepression in a &bgr;2-Adrenergic Receptor/Gi–Dependent Manner: A New Model of Takotsubo Cardiomyopathy , 2012, Circulation.

[30]  David R. Kelley,et al.  Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks , 2012, Nature Protocols.

[31]  S. Vatner,et al.  Echocardiography in Mice. , 2011, Current protocols in mouse biology.

[32]  Gary D Bader,et al.  Enrichment Map: A Network-Based Method for Gene-Set Enrichment Visualization and Interpretation , 2010, PloS one.

[33]  S. Houser,et al.  CaMKII Negatively Regulates Calcineurin–NFAT Signaling in Cardiac Myocytes , 2009, Circulation research.

[34]  H. Katus,et al.  Reversible left ventricular dysfunction resembling Takotsubo syndrome after self-injection of adrenaline. , 2009, The Canadian journal of cardiology.

[35]  E. Olson,et al.  Calsarcin-2 deficiency increases exercise capacity in mice through calcineurin/NFAT activation. , 2008, The Journal of clinical investigation.

[36]  A. Lerman,et al.  Apical ballooning syndrome (Tako-Tsubo or stress cardiomyopathy): a mimic of acute myocardial infarction. , 2008, American heart journal.

[37]  H. Katus,et al.  Preserved norepinephrine reuptake but reduced sympathetic nerve endings in hypertrophic volume-overloaded rat hearts. , 2006, Journal of cardiac failure.

[38]  S. Gerber,et al.  Injection of Nerve Growth Factor Into Stellate Ganglia Improves Norepinephrine Reuptake Into Failing Hearts , 2006, Hypertension.

[39]  S. Heiland,et al.  Chronic corticosterone-induced deterioration in rat behaviour is not paralleled by changes in hippocampal NF-κB-activation , 2006, Stress.

[40]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Katherine C. Wu,et al.  Neurohumoral features of myocardial stunning due to sudden emotional stress. , 2005, The New England journal of medicine.

[42]  P. Shannon,et al.  Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks , 2003 .

[43]  M. Daly,et al.  PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes , 2003, Nature Genetics.

[44]  S. Gerber,et al.  The neuronal norepinephrine transporter in experimental heart failure: evidence for a posttranscriptional downregulation. , 2001, Journal of molecular and cellular cardiology.

[45]  E. Olson,et al.  Independent Signals Control Expression of the Calcineurin Inhibitory Proteins MCIP1 and MCIP2 in Striated Muscles , 2000, Circulation research.

[46]  Jeffrey Robbins,et al.  A Calcineurin-Dependent Transcriptional Pathway for Cardiac Hypertrophy , 1998, Cell.

[47]  R. Zimlichman,,et al.  Plasma catecholamine and hemodynamic responses during isoproterenol infusions in humans , 1986, Clinical pharmacology and therapeutics.

[48]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[49]  Y. Neishi,et al.  Local release of catecholamines from the hearts of patients with tako-tsubo-like left ventricular dysfunction. , 2008, Circulation journal : official journal of the Japanese Circulation Society.

[50]  M. Ishihara,et al.  [Myocardial stunning due to simultaneous multivessel coronary spasms: a review of 5 cases]. , 1991, Journal of cardiology.