Thermal, Deformation, and Degassing Remote Sensing Time Series (CE 2000–2017) at the 47 most Active Volcanoes in Latin America: Implications for Volcanic Systems

Volcanoes are hazardous to local and global populations, but only a fraction are continuously monitored by ground‐based sensors. For example, in Latin America, more than 60% of Holocene volcanoes are unmonitored, meaning long‐term multiparameter data sets of volcanic activity are rare and sparse. We use satellite observations of degassing, thermal anomalies, and surface deformation spanning 17 years at 47 of the most active volcanoes in Latin America and compare these data sets to ground‐based observations archived by the Global Volcanism Program. This first comparison of multisatellite time series on a regional scale provides information regarding volcanic behavior during, noneruptive, pre‐eruptive, syneruptive, and posteruptive periods. For example, at Copahue volcano, deviations from background activity in all three types of satellite measurements were manifested months to years in advance of renewed eruptive activity in 2012. By quantifying the amount of degassing, thermal output, and deformation measured at each of these volcanoes, we test the classification of these volcanoes as open or closed volcanic systems. We find that ~28% of the volcanoes do not fall into either classification, and the rest show elements of both, demonstrating a dynamic range of behavior that can change over time. Finally, we recommend how volcano monitoring could be improved through better coordination of available satellite‐based capabilities and new instruments.

[1]  D. Roman,et al.  Alaska Volcano Observatory Alert and Forecasting Timeliness: 1989–2017 , 2018, Frontiers in Earth Science.

[2]  Michael P. Poland,et al.  Towards coordinated regional multi-satellite InSAR volcano observations: results from the Latin America pilot project , 2018, Journal of Applied Volcanology.

[3]  Y. Fialko,et al.  Variations in the long-term uplift rate due to the Altiplano-Puna magma body observed with Sentinel-1 interferometry , 2018 .

[4]  C. Wauthier,et al.  Satellite Geodesy Captures Offset Magma Supply Associated With Lava Lake Appearance at Masaya Volcano, Nicaragua , 2018 .

[5]  Daniele Perissin,et al.  Constraints on the geomorphological evolution of the nested summit craters of Láscar volcano from high spatio-temporal resolution TerraSAR-X interferometry , 2018, Bulletin of Volcanology.

[6]  Matthew E. Pritchard,et al.  Synthesis of global satellite observations of magmatic and volcanic deformation: implications for volcano monitoring & the lateral extent of magmatic domains , 2018, Journal of Applied Volcanology.

[7]  F. Amelung,et al.  What InSAR time-series methods are best suited for the Ecuadorian volcanoes , 2017 .

[8]  Fidel Costa,et al.  WOVOdat – An online, growing library of worldwide volcanic unrest , 2017 .

[9]  P. Lundgren,et al.  Decelerating uplift at Lazufre volcanic center, Central Andes, from A.D. 2010 to 2016, and implications for geodetic models , 2017 .

[10]  Christelle Wauthier,et al.  Surface deformation induced by magmatic processes at Pacaya Volcano, Guatemala revealed by InSAR , 2017 .

[11]  M. Blanco,et al.  Co-eruptive subsidence and post-eruptive uplift associated with the 2011–2012 eruption of Puyehue-Cordón Caulle, Chile, revealed by DInSAR , 2017 .

[12]  P. González,et al.  Recent unrest (2002–2015) imaged by space geodesy at the highest risk Chilean volcanoes: Villarrica, Llaima, and Calbuco (Southern Andes) , 2017 .

[13]  Division on Earth,et al.  Volcanic Eruptions and Their Repose, Unrest, Precursors, and Timing , 2017 .

[14]  F. Amelung,et al.  Ground deformation before the 2015 eruptions of Cotopaxi volcano detected by InSAR , 2017 .

[15]  P. Milillo,et al.  Source model for the Copahue volcano magma plumbing system constrained by InSAR surface deformation observations , 2017 .

[16]  M. Ripepe,et al.  Forecasting Effusive Dynamics and Decompression Rates by Magmastatic Model at Open-vent Volcanoes , 2017, Scientific Reports.

[17]  M. Ripepe,et al.  Modelling satellite-derived magma discharge to explain caldera collapse , 2017 .

[18]  T. Wright,et al.  Tectonic and volcanic monitoring using Sentinel-1: Current status and future plans of the COMET InSAR portal , 2017 .

[19]  S. Carn,et al.  A decade of global volcanic SO2 emissions measured from space , 2017, Scientific Reports.

[20]  Matthew E. Pritchard,et al.  Global Volcano Monitoring: What Does It Mean When Volcanoes Deform? , 2017 .

[21]  Zhong Lu,et al.  Three‐dimensional displacements of a large volcano flank movement during the May 2010 eruptions at Pacaya Volcano, Guatemala , 2017 .

[22]  F. Meyer,et al.  The SARVIEWS Project: Automated SAR Processing in Support of Operational Near Real-time Volcano Monitoring , 2016 .

[23]  Manuel Moussallam,et al.  Sustaining persistent lava lakes: Observations from high-resolution gas measurements at Villarrica volcano, Chile , 2016 .

[24]  J. Nocquet,et al.  Shallow earthquake inhibits unrest near Chiles–Cerro Negro volcanoes, Ecuador–Colombian border , 2016 .

[25]  K. Feigl,et al.  Magma injection into a long‐lived reservoir to explain geodetically measured uplift: Application to the 2007–2014 unrest episode at Laguna del Maule volcanic field, Chile , 2016, Journal of geophysical research. Solid earth.

[26]  G. Wadge,et al.  Dome growth, collapse, and valley fill at Soufrière Hills Volcano, Montserrat, from 1995 to 2013: Contributions from satellite radar measurements of topographic change , 2016 .

[27]  M. Ramsey,et al.  Predicting eruptions from precursory activity using remote sensing data hybridization , 2016 .

[28]  F. Amelung,et al.  Volcano deformation survey over the Northern and Central Andes with ALOS InSAR time series , 2016 .

[29]  Estelle Chaussard,et al.  Subsidence in the Parícutin lava field: Causes and implications for interpretation of deformation fields at volcanoes , 2016 .

[30]  S. Carn,et al.  Multi-decadal satellite measurements of global volcanic degassing , 2016 .

[31]  Zhong Lu,et al.  Post-Eruption Deformation Processes Measured Using ALOS-1 and UAVSAR InSAR at Pacaya Volcano, Guatemala , 2016, Remote. Sens..

[32]  Michael S. Ramsey,et al.  Synergistic use of satellite thermal detection and science: a decadal perspective using ASTER , 2015, Special Publications.

[33]  Robert Wright,et al.  Predicting the end of lava flow-forming eruptions from space , 2015, Bulletin of Volcanology.

[34]  G. Schubert,et al.  Degassing during quiescence as a trigger of magma ascent and volcanic eruptions , 2015, Scientific Reports.

[35]  B. Smets,et al.  Diking‐induced moderate‐magnitude earthquakes on a youthful rift border fault: The 2002 Nyiragongo‐Kalehe sequence, D.R. Congo , 2015 .

[36]  R. Green,et al.  An introduction to the NASA Hyperspectral InfraRed Imager (HyspIRI) mission and preparatory activities , 2015 .

[37]  R. Wright MODVOLC: 14 years of autonomous observations of effusive volcanism from space , 2015, Special Publications.

[38]  D. Johnston,et al.  Introducing the Volcanic Unrest Index (VUI): a tool to quantify and communicate the intensity of volcanic unrest , 2015, Bulletin of Volcanology.

[39]  Zhong Lu,et al.  Dramatic volcanic instability revealed by InSAR , 2015 .

[40]  Sarah K. Brown,et al.  Populations around Holocene volcanoes and development of a Population Exposure Index , 2015 .

[41]  Sarah K. Brown,et al.  An introduction to global volcanic hazard and risk , 2015 .

[42]  S. Samsonov,et al.  Deep source model for Nevado del Ruiz Volcano, Colombia, constrained by interferometric synthetic aperture radar observations , 2015 .

[43]  M. Ripepe,et al.  Enhanced volcanic hot-spot detection using MODIS IR data: results from the MIROVA system , 2015, Special Publications.

[44]  M. Pritchard,et al.  Deformation and seismicity near Sabancaya volcano, southern Peru, from 2002 to 2015 , 2015 .

[45]  Sarah K. Brown,et al.  Global volcanic hazards and risk: Summary background paper for the UN-ISDR Global Assessment Report on Disaster Risk Reduction 2015 , 2015 .

[46]  M. Ruiz,et al.  The scientific–community interface over the fifteen-year eruptive episode of Tungurahua Volcano, Ecuador , 2015, Journal of Applied Volcanology.

[47]  A. Hooper,et al.  Volcanology: lessons learned from synthetic aperture radar imagery , 2014 .

[48]  Makiko Sato,et al.  Total volcanic stratospheric aerosol optical depths and implications for global climate change , 2014 .

[49]  Gordon Woo,et al.  An analysis of the issuance of volcanic alert levels during volcanic crises , 2014, Journal of Applied Volcanology.

[50]  A. Hooper,et al.  Large‐scale inflation of Tungurahua volcano (Ecuador) revealed by Persistent Scatterers SAR interferometry , 2014 .

[51]  Henriette Sudhaus,et al.  Satellite radar data reveal short-term pre-explosive displacements and a complex conduit system at Volcán de Colima, Mexico , 2014, Front. Earth Sci..

[52]  F. Costa,et al.  Locating magma reservoirs using InSAR and petrology before and during the 2011–2012 Cordón Caulle silicic eruption , 2014 .

[53]  Matthew E. Pritchard,et al.  Reconnaissance earthquake studies at nine volcanic areas of the central Andes with coincident satellite thermal and InSAR observations , 2014 .

[54]  J. Jay A Geophysical Survey Of Active Volcanism In The Central And Southern Andes , 2014 .

[55]  R. S. J. Sparks,et al.  Global link between deformation and volcanic eruption quantified by satellite imagery , 2014, Nature Communications.

[56]  E. Chaussard,et al.  Regional controls on magma ascent and storage in volcanic arcs , 2014 .

[57]  Kurt L. Feigl,et al.  Rapid uplift in Laguna del Maule volcanic field of the Andean Southern Volcanic zone (Chile) 2007–2012 , 2014 .

[58]  Rowena B. Lohman,et al.  The 2011 Hudson volcano eruption (Southern Andes, Chile): Pre-eruptive inflation and hotspots observed with InSAR and thermal imagery , 2013, Bulletin of Volcanology.

[59]  F. Bonali Earthquake-induced static stress change on magma pathway in promoting the 2012 Copahue eruption , 2013 .

[60]  M. Poland,et al.  Moderate‐magnitude earthquakes induced by magma reservoir inflation at Kīlauea Volcano, Hawai‘i , 2013 .

[61]  Rowena B. Lohman,et al.  Characterizing and estimating noise in InSAR and InSAR time series with MODIS , 2013 .

[62]  Rosa Sobradelo,et al.  Global volcanic unrest in the 21st century: An analysis of the first decade , 2013 .

[63]  L. Lara,et al.  Subsidence at southern Andes volcanoes induced by the 2010 Maule, Chile earthquake , 2013 .

[64]  Yosuke Aoki,et al.  Characterization of open and closed volcanic systems in Indonesia and Mexico using InSAR time series , 2013 .

[65]  S. Carn,et al.  Volcano monitoring applications of the Ozone Monitoring Instrument , 2013 .

[66]  S. Carn,et al.  Measuring global volcanic degassing with the Ozone Monitoring Instrument (OMI) , 2013 .

[67]  David J. Schneider,et al.  Merapi 2010 eruption—Chronology and extrusion rates monitored with satellite radar and used in eruption forecasting , 2013 .

[68]  Matthew E. Pritchard,et al.  Decadal volcanic deformation in the Central Andes Volcanic Zone revealed by InSAR time series , 2013 .

[69]  Tamsin A. Mather,et al.  On the lack of InSAR observations of magmatic deformation at Central American volcanoes , 2013 .

[70]  G. Chiodini,et al.  Gas geochemistry of the magmatic-hydrothermal fluid reservoir in the Copahue–Caviahue Volcanic Complex (Argentina) , 2013 .

[71]  Paul Segall,et al.  Volcano deformation and eruption forecasting , 2013 .

[72]  Tamsin A. Mather,et al.  Applicability of InSAR to tropical volcanoes: insights from Central America , 2013 .

[73]  A. Melkonian,et al.  Volcanic hotspots of the central and southern Andes as seen from space by ASTER and MODVOLC between the years 2000 and 2010 , 2013 .

[74]  J. V. Gent,et al.  Volcanic SO 2 fluxes derived from satellite data: a survey using OMI, GOME-2, IASI and MODIS , 2012 .

[75]  Falk Amelung,et al.  Space‐geodetic evidence for multiple magma reservoirs and subvolcanic lateral intrusions at Fernandina Volcano, Galápagos Islands , 2012 .

[76]  Tamsin A. Mather,et al.  Measuring large topographic change with InSAR: Lava thicknesses, extrusion rate and subsidence rate at Santiaguito volcano, Guatemala , 2012 .

[77]  Henk Eskes,et al.  TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications , 2012 .

[78]  Jonathan M. Lees,et al.  Tilt prior to explosions and the effect of topography on ultra‐long‐period seismic records at Fuego volcano, Guatemala , 2012 .

[79]  J. Kauahikaua,et al.  One Hundred Years of Volcano Monitoring in Hawaii , 2012 .

[80]  J. Lowenstern,et al.  The role of dyking and fault control in the rapid onset of eruption at Chaitén volcano, Chile , 2011, Nature.

[81]  Rowena B. Lohman,et al.  Earthquake swarms in South America , 2011 .

[82]  P. Segall,et al.  Physics‐based models of ground deformation and extrusion rate at effusively erupting volcanoes , 2011 .

[83]  F. Amelung,et al.  Co-eruptive subsidence at Galeras identified during an InSAR survey of Colombian volcanoes (2006–2009) , 2011 .

[84]  A. Caselli,et al.  Deformation of Copahue volcano: Inversion of InSAR data using a genetic algorithm , 2011 .

[85]  Virginie Pinel,et al.  The challenging retrieval of the displacement field from InSAR data for andesitic stratovolcanoes: Case study of Popocatepetl and Colima Volcano, Mexico , 2011 .

[86]  Науки о Земле Global Volcanism Program , 2010 .

[87]  Masanobu Shimada,et al.  An Evaluation of the ALOS PALSAR L-Band Backscatter—Above Ground Biomass Relationship Queensland, Australia: Impacts of Surface Moisture Condition and Vegetation Structure , 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[88]  G. Wadge,et al.  Steady downslope movement on the western flank of Arenal volcano, Costa Rica , 2010 .

[89]  Marco Liuzzo,et al.  A model of degassing for Stromboli volcano , 2010 .

[90]  Zhong Lu,et al.  Ground surface deformation patterns, magma supply, and magma storage at Okmok volcano, Alaska, from InSAR analysis , 2010 .

[91]  Christoph Kern,et al.  Network for Observation of Volcanic and Atmospheric Change (NOVAC)—A global network for volcanic gas monitoring: Network layout and instrument description , 2010 .

[92]  Matthew E. Pritchard,et al.  Duration, magnitude, and frequency of subaerial volcano deformation events: New results from Latin America using InSAR and a global synthesis , 2010 .

[93]  Antonio Pepe,et al.  Stress transfer in the Lazufre volcanic area, central Andes , 2009 .

[94]  D. Coppola,et al.  Lava discharge rate and effusive pattern at Piton de la Fournaise from MODIS data , 2009 .

[95]  S. Carn,et al.  Daily monitoring of Ecuadorian volcanic degassing from space , 2008 .

[96]  E. Del Pezzo,et al.  Volcanic tremor and local earthquakes at Copahue volcanic complex, Southern Andes, Argentina , 2008 .

[97]  Zhiming Lu,et al.  On the absence of InSAR-detected volcano deformation spanning the 1995–1996 and 1999 eruptions of Shishaldin Volcano, Alaska , 2006 .

[98]  M. Abrams,et al.  ASTER observations of thermal anomalies preceding the April 2003 eruption of Chikurachki volcano, Kurile Islands, Russia , 2005 .

[99]  D. Fornari,et al.  Wolf Volcano, Galápagos Archipelago: Melting and Magmatic Evolution at the Margins of a Mantle Plume , 2005 .

[100]  Hiroshi Shinohara,et al.  Volcanic gases emitted during mild Strombolian activity of Villarrica volcano, Chile , 2005 .

[101]  J. Naranjo,et al.  The 2000 AD eruption of Copahue Volcano, Southern Andes , 2004 .

[102]  A. Harris,et al.  MODVOLC: near-real-time thermal monitoring of global volcanism , 2004 .

[103]  M. Simons,et al.  An InSAR‐based survey of volcanic deformation in the central Andes , 2004 .

[104]  T. Wright,et al.  Toward mapping surface deformation in three dimensions using InSAR , 2004 .

[105]  R. Sparks,et al.  Forecasting volcanic eruptions , 2003 .

[106]  Yasushi Yamaguchi,et al.  Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) , 2003, SPIE Remote Sensing.

[107]  A. Woods,et al.  The role of volatiles in magma chamber dynamics , 2002, Nature.

[108]  Jonathan Dehn,et al.  Thermal precursors in satellite images of the 1999 eruption of Shishaldin Volcano , 2002 .

[109]  Gianfranco Fornaro,et al.  A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms , 2002, IEEE Trans. Geosci. Remote. Sens..

[110]  N. A. Krotkov,et al.  Volcanic eruption detection by the Total Ozone Mapping Spectrometer (TOMS) instruments: a 22-year record of sulphur dioxide and ash emissions , 2002, Geological Society, London, Special Publications.

[111]  A. Ouimette,et al.  Hydrothermal element fluxes from Copahue, Argentina: A "beehive" volcano in turmoil , 2001 .

[112]  D. Rothery,et al.  Effusion rate trends at Etna and Krafla and their implications for eruptive mechanisms , 2000 .

[113]  Martin J. Wooster,et al.  Landsat infrared analysis of fumarole activity at Unzen volcano : time-series comparison with gas and magma fluxes , 1999 .

[114]  L. Keszthelyi,et al.  Calculation of lava effusion rates from Landsat TM data , 1998 .

[115]  Shuichi Rokugawa,et al.  A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images , 1998, IEEE Trans. Geosci. Remote. Sens..

[116]  C. Oppenheimer,et al.  Remote sensing of heat, lava and fumarole emissions from Erta 'Ale volcano, Ethiopia , 1997 .

[117]  William I. Rose,et al.  Chapter 1. VOLCANIC-GAS STUDIES: METHODS, RESULTS, AND APPLICATIONS , 1994 .

[118]  Tommaso Caltabiano,et al.  SO2 flux measurements at Mount Etna (Sicily) , 1994 .

[119]  Clive Oppenheimer,et al.  Infrared image analysis of volcanic thermal features: Láscar Volcano, Chile, 1984–1992 , 1993 .

[120]  H. Huppert,et al.  Thermal control of basaltic fissure eruptions , 1989, Nature.

[121]  James H. Dieterich,et al.  Deformation from Inflation of a Dipping Finite Prolate Spheroid in an Elastic Half‐Space as a Model for Volcanic Stressing , 1988 .

[122]  D. Mctigue Elastic stress and deformation near a finite spherical magma body: Resolution of the point source paradox , 1987 .

[123]  D. Rothery,et al.  Using the Landsat Thematic Mapper to detect and monitor active volcanoes: An example from Lascar volcano, northern Chile , 1987 .

[124]  Russell Blong,et al.  Volcanic Hazards: A Sourcebook on the Effects of Eruptions , 1985 .

[125]  F. Innocenti,et al.  Phlegraean Fields 1982–1984: Brief chronicle of a volcano emergency in a densely populated area , 1984 .

[126]  S. Self,et al.  The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism , 1982 .

[127]  S. Ebmeier,et al.  of Geophysical Research : Solid Earth Decaying Lava Extrusion Rate at El Reventador Volcano , Ecuador , Measured Using High-Resolution Satellite Radar , 2018 .

[128]  M. Blanco,et al.  Ground Deformation Between 2002 and 2013 from InSAR Observations , 2016 .

[129]  M. Agusto,et al.  Prehistoric to Historic Volcanic Activity at Copahue Volcano , 2016 .

[130]  M. Agusto,et al.  The 2012 Eruption , 2016 .

[131]  Sarah K. Brown,et al.  Country and regional profiles of volcanic hazard and risk , 2015 .

[132]  W. Aspinall,et al.  Chapter 24 A review of volcanic hazard and risk-assessment praxis at the Soufrière Hills Volcano, Montserrat from 1997 to 2011 , 2014 .

[133]  B. Voight,et al.  Chapter 1 An overview of the eruption of Soufrière Hills Volcano, Montserrat from 2000 to 2010 , 2014 .

[134]  M. Bagnardi Dynamics of Magma Supply, Storage and Migration at Basaltic Volcanoes: Geophysical Studies of the Galápagos and Hawaiian Volcanoes , 2014 .

[135]  J. Gottsmann,et al.  Chapter 11 Volcano geodesy at the Soufrière Hills Volcano, Montserrat: a review , 2014 .

[136]  R. Andrews,et al.  Bulletin of the Global Volcanism Network , 2014 .

[137]  M. S. Baker,et al.  Investigating the dynamics of basaltic volcano magmatic systems with space geodesy , 2012 .

[138]  R. Wunderman Report on Chaiten (Chile) , 2008 .

[139]  C. Newhall Volcanology 101 for Seismologists , 2007 .

[140]  J. Rudant,et al.  Evaluation of the potential of sar ERS and ASAR ENVISAT sensors in multi-incidence and multi-polarisation modes for landscape study in french guyana : Examples of kourou and saint laurent du maroni , 2006 .

[141]  William I. Rose,et al.  Volcanic-gas studies: Methods, results, and applications , 1994 .