A novel creep-fatigue life evaluation method for ceramic-composites components

[1]  Jianxiong Gao,et al.  Strength and stiffness degradation modeling and fatigue life prediction of composite materials based on a unified fatigue damage model , 2022, Engineering Failure Analysis.

[2]  G. Fantozzi,et al.  Time-dependent creep fatigue damage evolution in C/SiC composite: Theory and analytical prediction , 2022, Ceramics International.

[3]  Shenmin Zhang,et al.  Modeling of fatigue failure for SiC/SiC ceramic matrix composites at elevated temperatures and multi-scale experimental validation , 2022, Journal of the European Ceramic Society.

[4]  J. Ahmad,et al.  Modeling deformation of a melt-infiltrated SiC/SiC composite under fatigue loading , 2021, Ceramics International.

[5]  Xiaoguang Yang,et al.  Multiscale Investigation on Fatigue Properties and Damage of a 3D Braided SiC/SiC + PyC/SiC Composites in the Full Stress Range at 1300 °C , 2021, Journal of the European Ceramic Society.

[6]  Haitao Cui,et al.  A mesoscale fatigue progressive damage model for 3D woven composites , 2021 .

[7]  Bo Wang,et al.  A multi-scale prediction model of elastic modulus for ceramic matrix composites considering oxidation damage , 2021 .

[8]  Shun‐Peng Zhu,et al.  Cycle-dependent creep-fatigue deformation and life predictions in a nickel-based superalloy at elevated temperature , 2021 .

[9]  Xiaoguang Yang,et al.  Experimental and numerical study on creep behaviors of 2D twill woven quartz fiber/silica matrix composites , 2021, Ceramics International.

[10]  R. Luo,et al.  Effects of fabrication processes on the properties of SiC/SiC composites , 2021 .

[11]  A. Chattopadhyay,et al.  Modeling creep behavior in ceramic matrix composites , 2021 .

[12]  Shenmin Zhang,et al.  Multi-scale modeling and experimental study of fatigue of plain-woven SiC/SiC composites , 2021, Aerospace Science and Technology.

[13]  Zhigang Sun,et al.  Modeling the Effect of Oxidation on the Creep Behavior of SiC/PyC/SiC Mini-composites Under Wet Oxygen Atmosphere , 2021, Applied Composite Materials.

[14]  Zihua Zhao,et al.  Effects of temperature and atmosphere on microstructural evolution and mechanical properties of KD-II SiC fibers , 2020 .

[15]  G. Morscher,et al.  Tensile creep behavior of SiCf/SiC ceramic matrix minicomposites , 2020 .

[16]  S. S. Samareh-Mousavi,et al.  A novel creep-fatigue stiffness degradation model for composite materials , 2020 .

[17]  Longbiao Li Fatigue damage and lifetime prediction of fiber-reinforced ceramic-matrix composites , 2020 .

[18]  J. Lamon Review: creep of fibre-reinforced ceramic matrix composites , 2019, International Materials Reviews.

[19]  Xiaoguang Yang,et al.  Deformation and rupture behaviors of SiC/SiC under creep, fatigue and dwell-fatigue load at 1300 °C , 2019 .

[20]  T. Ogasawara,et al.  Effects of cyclic tensile loading on the rupture behavior of orthogonal 3-D woven SiC fiber/SiC matrix composites at elevated temperatures in air , 2019, Journal of the European Ceramic Society.

[21]  Z. Qiang,et al.  Viscoplastic analysis method of an aeroengine turbine blade subjected to transient thermo-mechanical loading , 2019, International Journal of Mechanical Sciences.

[22]  Longbiao Li Damage development and lifetime prediction of fiber-reinforced ceramic-matrix composites subjected to cyclic loading at 1300 °C in vacuum, inert and oxidative atmospheres , 2019, Aerospace Science and Technology.

[23]  R. Hay,et al.  Model for SiC fiber strength after oxidation in dry and wet air , 2018, Journal of the American Ceramic Society.

[24]  Chao Zhang,et al.  Meso-scale progressive damage modeling and life prediction of 3D braided composites under fatigue tension loading , 2018, Composite Structures.

[25]  Li Longbiao In-phase thermomechanical fatigue damage evolution of long fiber-reinforced ceramic-matrix composites using fatigue hysteresis-based damage parameters , 2018 .

[26]  Jian Song,et al.  Fatigue life prediction model of 2.5D woven composites at various temperatures , 2017 .

[27]  Li Longbiao Damage evolution of fiber-reinforced ceramic-matrix composites under stress-rupture and cyclic loading at elevated temperature in oxidizing atmosphere , 2017 .

[28]  V. Silberschmidt,et al.  Modelling of Damage Evolution in Braided Composites: Recent Developments , 2017 .

[29]  J. Lamon,et al.  Damage and failure of SiC fiber tows during environment activated slow crack growth: Residual behavior and Strength-Probability-Time diagrams , 2017 .

[30]  Li Longbiao Modeling strength degradation of fiber-reinforced ceramic-matrix composites under cyclic loading at room and elevated temperatures , 2017 .

[31]  Jun Wang,et al.  Effect of heat treatment on the microstructure and tensile strength of KD-II SiC fibers , 2016 .

[32]  C. Przybyla,et al.  Modeling Environmental Degradation of SiC-Based Fibers , 2016 .

[33]  Longbiao Li Fatigue Life Prediction of Fiber-Reinforced Ceramic-Matrix Composites with Different Fiber Preforms at Room and Elevated Temperatures , 2016, Materials.

[34]  Xin-gui Zhou,et al.  Tension-tension fatigue behavior of a PIP SiC/SiC composite at elevated temperature in air , 2016 .

[35]  Frank W. Zok,et al.  Ceramic-matrix composites enable revolutionary gains in turbine engine efficiency , 2016 .

[36]  Li Longbiao A hysteresis dissipated energy-based damage parameter for life prediction of carbon fiber-reinforced ceramic-matrix composites under fatigue loading , 2015 .

[37]  Xiaoguang Yang,et al.  Low cycle fatigue behavior of a 3D braided KD-I fiber reinforced ceramic matrix composite for coated and uncoated specimens at 1100 °C and 1300 °C , 2015 .

[38]  Wenfeng Hao,et al.  Computational analysis of fatigue behavior of 3D 4-directional braided composites based on unit cell approach , 2015, Adv. Eng. Softw..

[39]  M. Grujicic,et al.  Multi-length-scale Material Model for SiC/SiC Ceramic-Matrix Composites (CMCs): Inclusion of In-Service Environmental Effects , 2015, Journal of Materials Engineering and Performance.

[40]  Y. Xiaoguang,et al.  Fiber strength measurement for KD-I(f)/SiC composites and correlation to tensile mechanical behavior at room and elevated temperatures , 2015 .

[41]  Yutai Katoh,et al.  Current status and recent research achievements in SiC/SiC composites , 2014 .

[42]  Liwei Wu,et al.  Finite element analyses on three-point low-cyclic bending fatigue of 3-D braided composite materials at microstructure level , 2014 .

[43]  G. Morscher Fiber‐Reinforced Ceramic Matrix Composites for Aero Engines , 2014 .

[44]  J. B. Min,et al.  Micromechanics modeling for fatigue damage analysis designed for fabric reinforced ceramic matrix composites , 2014 .

[45]  Pappu L. N. Murthy,et al.  Probabilistic Analysis of a SiC/SiC Ceramic Matrix Composite Turbine Vane , 2013 .

[46]  Zu-de Feng,et al.  Oxidation behavior of Hi-Nicalon SiC monofilament fibres in air and O2-H2O-Ar atmospheres , 2012 .

[47]  J. Lane,et al.  Effect of frequency and environment on fatigue behavior of a CVI SiC/SiC ceramic matrix composite at 1200 °C ☆ , 2011 .

[48]  Eric Bouillon,et al.  Ceramic Matrix Composites to make breakthroughs in aircraft engine performance. , 2009 .

[49]  John J. Lesko,et al.  Modeling the variable amplitude fatigue of composite materials: A review and evaluation of the state of the art for spectrum loading , 2008 .

[50]  D. Glass Ceramic Matrix Composite (CMC) Thermal Protection Systems (TPS) and Hot Structures for Hypersonic Vehicles , 2008 .

[51]  W. W. Stinchcomb,et al.  Damage Mechanisms of Cross‐Ply Nicalon/CAS‐II Laminates Under Cyclic Tension , 2008 .

[52]  Ireneusz Lapczyk,et al.  Progressive damage modeling in fiber-reinforced materials , 2007 .

[53]  G. Morscher,et al.  In‐Plane Cracking Behavior and Ultimate Strength for 2D Woven and Braided Melt‐Infiltrated SiC/SiC Composites Tensile Loaded in Off‐Axis Fiber Directions , 2007 .

[54]  R. Naslain Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview , 2004 .

[55]  W. Curtin,et al.  Stress Rupture in Ceramic-Matrix Composites: Theory and Experiment , 2002 .

[56]  Larry Lessard,et al.  Progressive Fatigue Damage Modeling of Composite Materials, Part I: Modeling , 2000 .

[57]  R. E. Tressler,et al.  Creep of SiC-SiC microcomposites , 1999 .

[58]  F. Zok,et al.  Low-cycle fatigue of Nicalon™-fiber-reinforced ceramic composites , 1999 .

[59]  Yoshiharu Mutoh,et al.  Monotonic tension, fatigue and creep behavior of SiC-fiber-reinforced SiC-matrix composites: a review , 1999 .

[60]  H. Whitworth,et al.  A stiffness degradation model for composite laminates under fatigue loading , 1997 .

[61]  A. Evans,et al.  Creep rupture in ceramic matrix composites with creeping fibers , 1995 .

[62]  A. Evans,et al.  Fatigue of ceramic matrix composites , 1995 .

[63]  Xin Wu,et al.  Tensile Creep and Creep‐Strain Recovery Behavior of Silicon Carbide Fiber/Calcium Aluminosilicate Matrix Ceramic Composites , 1993 .

[64]  D. Rouby,et al.  Fatigue behaviour related to interface modification during load cycling in ceramic-matrix fibre composites , 1993 .

[65]  R. Talreja,et al.  Fatigue of composite materials: damage mechanisms and fatigue-life diagrams , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.