Chromosomal Rearrangements Formed by rrn Recombination Do Not Improve Replichore Balance in Host-Specific Salmonella enterica Serovars

Background Most of the ∼2,600 serovars of Salmonella enterica have a broad host range as well as a conserved gene order. In contrast, some Salmonella serovars are host-specific and frequently exhibit large chromosomal rearrangements from recombination between rrn operons. One hypothesis explaining these rearrangements suggests that replichore imbalance introduced from horizontal transfer of pathogenicity islands and prophages drives chromosomal rearrangements in an attempt to improve balance. Methodology/Principal Findings This hypothesis was directly tested by comparing the naturally-occurring chromosomal arrangement types to the theoretically possible arrangement types, and estimating their replichore balance using a calculator. In addition to previously characterized strains belonging to host-specific serovars, the arrangement types of 22 serovar Gallinarum strains was also determined. Only 48 out of 1,440 possible arrangement types were identified in 212 host-specific strains. While the replichores of most naturally-occurring arrangement types were well-balanced, most theoretical arrangement types had imbalanced replichores. Furthermore, the most common types of rearrangements did not change replichore balance. Conclusions/Significance The results did not support the hypothesis that replichore imbalance causes these rearrangements, and suggest that the rearrangements could be explained by aspects of a host-specific lifestyle.

[1]  G. Garrity Bergey’s Manual® of Systematic Bacteriology , 2012, Springer New York.

[2]  F. Weill,et al.  Supplement 2003-2007 (No. 47) to the White-Kauffmann-Le Minor scheme. , 2010, Research in microbiology.

[3]  Vagn Møller Simplified tests for some amino acid decarboxylases and for the arginine dihydrolase system. , 2009 .

[4]  S. Bell,et al.  Termination structures in the Escherichia coli chromosome replication fork trap. , 2009, Journal of molecular biology.

[5]  R. Johnston,et al.  Salmonella paratyphi C: Genetic Divergence from Salmonella choleraesuis and Pathogenic Convergence with Salmonella typhi , 2009, PloS one.

[6]  S. Bell,et al.  The replication fork trap and termination of chromosome replication , 2008, Molecular microbiology.

[7]  Georgios S. Vernikos,et al.  Comparative genome analysis of Salmonella Enteritidis PT4 and Salmonella Gallinarum 287/91 provides insights into evolutionary and host adaptation pathways. , 2008, Genome research.

[8]  I. Miklós,et al.  Dynamics of Genome Rearrangement in Bacterial Populations , 2008, PLoS genetics.

[9]  O. Espéli,et al.  DNA dynamics vary according to macrodomain topography in the E. coli chromosome , 2008, Molecular microbiology.

[10]  O. Espéli,et al.  Chromosome Structuring Limits Genome Plasticity in Escherichia coli , 2007, PLoS genetics.

[11]  B. Morton,et al.  Separating the effects of mutation and selection in producing DNA skew in bacterial chromosomes , 2007, BMC Genomics.

[12]  R. Johnston,et al.  Diverse genome structures of Salmonella paratyphi C , 2007, BMC Genomics.

[13]  Kenneth D. Clinkenbeard,et al.  Chromosome Rearrangement and Diversification of Francisella tularensis Revealed by the Type B (OSU18) Genome Sequence , 2006, Journal of bacteriology.

[14]  R. Coppel,et al.  Genome reduction in Leptospira borgpetersenii reflects limited transmission potential , 2006, Proceedings of the National Academy of Sciences.

[15]  S. Andersson,et al.  Genome Rearrangements, Deletions, and Amplifications in the Natural Population of Bartonella henselae , 2006, Journal of bacteriology.

[16]  J. Terajima,et al.  Spontaneous recombination between homologous prophage regions causes large-scale inversions within the Escherichia coli O157:H7 chromosome. , 2006, Gene.

[17]  Eduardo P C Rocha,et al.  Replication‐associated gene dosage effects shape the genomes of fast‐growing bacteria but only for transcription and translation genes , 2006, Molecular microbiology.

[18]  M. McClelland,et al.  Transcriptome of Salmonella enterica serovar Typhi within macrophages revealed through the selective capture of transcribed sequences. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[19]  K. Sanderson,et al.  Genome plasticity and ori-ter rebalancing in Salmonella typhi. , 2006, Molecular biology and evolution.

[20]  J. Slauch,et al.  The Genus Salmonella , 2006 .

[21]  K. Sanderson,et al.  The Genome of Salmonella enterica Serovar Gallinarum: Distinct Insertions/Deletions and Rare Rearrangements , 2005, Journal of bacteriology.

[22]  Bruno Torrésani,et al.  Decoding the nucleoid organisation of Bacillus subtilis and Escherichia coli through gene expression data , 2005, BMC Genomics.

[23]  S. Nair,et al.  Diversity of Genome Structure in Salmonella enterica Serovar Typhi Populations , 2005, Journal of bacteriology.

[24]  M. Rossignol,et al.  Macrodomain organization of the Escherichia coli chromosome , 2004, The EMBO journal.

[25]  Arkady B Khodursky,et al.  Spatial patterns of transcriptional activity in the chromosome of Escherichia coli , 2004, Genome Biology.

[26]  Robert K. Colwell,et al.  INTERPOLATING, EXTRAPOLATING, AND COMPARING INCIDENCE-BASED SPECIES ACCUMULATION CURVES , 2004 .

[27]  C. Médigue,et al.  Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[28]  J. Bouché,et al.  Characterization and properties of very large inversions of the E. coli chromosome along the origin-to-terminus axis , 2004, Molecular and General Genetics MGG.

[29]  Alison G Lee,et al.  Genomic rearrangements at rrn operons in Salmonella. , 2003, Genetics.

[30]  B. Barrell,et al.  Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica , 2003, Nature Genetics.

[31]  Jiuzhou Z. Song,et al.  Wavelet to predict bacterial ori and ter: a tendency towards a physical balance , 2003, BMC Genomics.

[32]  Guy Plunkett,et al.  Comparative Genomics of Salmonellaenterica Serovar Typhi Strains Ty2 and CT18 , 2003, Journal of bacteriology.

[33]  G H Goldman,et al.  Comparative Analyses of the Complete Genome Sequences of Pierce's Disease and Citrus Variegated Chlorosis Strains of Xylella fastidiosa , 2003, Journal of bacteriology.

[34]  Arthur Thompson,et al.  Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica , 2002, Molecular microbiology.

[35]  David E. Swayne,et al.  Diseases of poultry. , 2003 .

[36]  R. A. Helm Analysis of Chromosomal Rearrangements in Host Specific Salmonella Serovars , 2003 .

[37]  K. Sanderson,et al.  Inversions over the Terminus Region in Salmonella and Escherichia coli: IS200s as the Sites of Homologous Recombination Inverting the Chromosome of Salmonella enterica Serovar Typhi , 2002, Journal of bacteriology.

[38]  Guy Plunkett,et al.  Genome Sequence of Yersinia pestis KIM , 2002, Journal of bacteriology.

[39]  K. Sanderson,et al.  The Evolving Genome of Salmonella enterica Serovar Pullorum , 2002, Journal of bacteriology.

[40]  M. Hensel,et al.  Salmonella Pathogenicity Island 2 Mediates Protection of Intracellular Salmonella from Reactive Nitrogen Intermediates , 2002, The Journal of experimental medicine.

[41]  K. Hughes,et al.  FimZ Is a Molecular Link between Sticking and Swimming in Salmonella enterica Serovar Typhimurium , 2002, Journal of bacteriology.

[42]  G. Olsen,et al.  Comparative genomics of closely related salmonellae. , 2002, Trends in microbiology.

[43]  Kim Rutherford,et al.  Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18 , 2001, Nature.

[44]  M. Simmonds,et al.  Genome sequence of Yersinia pestis, the causative agent of plague , 2001, Nature.

[45]  R. A. Helm,et al.  Rapid Approach To Determine rrnArrangement in Salmonella Serovars , 2001, Applied and Environmental Microbiology.

[46]  W. Nauseef,et al.  Salmonella Pathogenicity Island 2-Encoded Type III Secretion System Mediates Exclusion of NADPH Oxidase Assembly from the Phagosomal Membrane1 , 2001, The Journal of Immunology.

[47]  J. Louarn,et al.  Localized remodeling of the Escherichia coli chromosome: the patchwork of segments refractory and tolerant to inversion near the replication terminus. , 2001, Genetics.

[48]  F. Fang,et al.  Oxygen-dependent anti-Salmonella activity of macrophages. , 2001, Trends in microbiology.

[49]  F. Fang,et al.  Antimicrobial Actions of the Nadph Phagocyte Oxidase and Inducible Nitric Oxide Synthase in Experimental Salmonellosis. I. Effects on Microbial Killing by Activated Peritoneal Macrophages in Vitro , 2000, The Journal of experimental medicine.

[50]  G. Dougan,et al.  Antimicrobial Actions of the Nadph Phagocyte Oxidase and Inducible Nitric Oxide Synthase in Experimental Salmonellosis. II. Effects on Microbial Proliferation and Host Survival in Vivo , 2000, The Journal of experimental medicine.

[51]  F. Fang,et al.  Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. , 2000, Science.

[52]  H. Niki,et al.  Dynamic organization of chromosomal DNA in Escherichia coli. , 2000, Genes & development.

[53]  I-CeuI fragment analysis of the Shigella species: evidence for large-scale chromosome rearrangement in S. dysenteriae and S. flexneri. , 2000, FEMS microbiology letters.

[54]  K. Sanderson,et al.  Homologous recombination between rrn operons rearranges the chromosome in host-specialized species of Salmonella. , 1998, FEMS microbiology letters.

[55]  D. O’Callaghan,et al.  Differences in chromosome number and genome rearrangements in the genus Brucella , 1998, Molecular microbiology.

[56]  V. de Lorenzo,et al.  Modulation of gene expression through chromosomal positioning in Escherichia coli. , 1997, Microbiology.

[57]  J. E. Olsen,et al.  Genomic lineage of Salmonella enterica serotype Gallinarum. , 1996, Journal of medical microbiology.

[58]  K. Sanderson,et al.  Highly plastic chromosomal organization in Salmonella typhi. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[59]  J. Roth,et al.  Recombination between chromosomal IS200 elements supports frequent duplication formation in Salmonella typhimurium. , 1995, Genetics.

[60]  K. Sanderson,et al.  The chromosome of Salmonella paratyphi A is inverted by recombination between rrnH and rrnG , 1995, Journal of bacteriology.

[61]  K. Sanderson,et al.  Rearrangements in the genome of the bacterium Salmonella typhi. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[62]  P. Pfaffle,et al.  Single-step purification of a thermostable DNA polymerase expressed in Escherichia coli. , 1995, BioTechniques.

[63]  K. Sanderson,et al.  The XbaI-BlnI-CeuI genomic cleavage map of Salmonella paratyphi B , 1994, Journal of bacteriology.

[64]  K. Sanderson,et al.  The XbaI‐BlnI‐CeuI genomic cleavage map of Salmonella enteritidis shows an inversion relative to Salmonella typhimurium LT2 , 1993, Molecular microbiology.

[65]  T. Whittam,et al.  Evolutionary origin and radiation of the avian-adapted non-motile salmonellae. , 1993, Journal of medical microbiology.

[66]  J. Henson,et al.  dif, a recA-independent recombination site in the terminus region of the chromosome of Escherichia coli. , 1991, The New biologist.

[67]  岡見 吉郎 Bergey′s Manual of Systematic Bacteriology初版第4巻の発刊をふまえて--放線菌の分類,同定における問題点と展望 (第63回日本細菌学会総会) -- (シンポジウム) , 1990 .

[68]  J. Gray,et al.  Effects of chromosomal inversion on cell fitness in Escherichia coli K-12. , 1988, Genetics.

[69]  A. Chao Estimating the population size for capture-recapture data with unequal catchability. , 1987, Biometrics.

[70]  J. Roth,et al.  Gene location affects expression level in Salmonella typhimurium , 1987, Journal of bacteriology.

[71]  W. Ewing,et al.  Edwards and Ewing's Identification of Enterobacteriaceae , 1986 .

[72]  C. Hill,et al.  Transposition of a chromosomal segment bounded by redundant rRNA genes into other rRNA genes in Escherichia coli , 1982, Journal of bacteriology.

[73]  C W Hill,et al.  Inversions between ribosomal RNA genes of Escherichia coli. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[74]  C. Hill,et al.  Tandem duplications resulting from recombination between ribosomal RNA genes in Escherichia coli. , 1977, Journal of molecular biology.